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Equation of Motion
• Equation of motion of an electron in a uniform magnetic field:

• Solution:
 

dv!
dt

= 0

dv⊥

dt
= −e
γ mec

v⊥ ×B → d 2v⊥

dt 2
= −ω B

2v⊥ whereωB ≡
eB

γ mec

  

v(t) = v⊥ −x̂sinω Bt + ŷcosω Bt( ) + ẑv!
r(t) = v⊥

ω B

x̂cosω Bt + ŷsinω Bt( ) + ẑv!t

 

ω L =
eB
mec

ω B =
eB

γ mec
= ω L

γ

= 17.6
γ

B
µG

⎛
⎝⎜

⎞
⎠⎟
(Hz)

rB =
v⊥

ω B

= 1.7 ×109γβ⊥
B
µG

⎛
⎝⎜

⎞
⎠⎟
(cm)

 v = v! + v⊥

  where v! = v cosα , v⊥ = v sinα

: Larmor frequency
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[Spectrum of Synchrotron Radiation: A Qualitative Discussion]

• Because of beaming effects the emitted radiation fields appear to be concentrated in a narrow set 
of directions about the particle’s velocity.

The observer will see a pulses of radiation confined to a time interval much smaller than the 
gyration period. The spectrum will thus be spread over a much broader frequency range than on 
of order       .

The cone of emission has an angular width          . Therefore, the observer will sees emission over 
the angular range of                .

• The radiation appears beamed toward the direction of the observer in a series of pulses spaced in 
time              apart, but with each pulse lasting only                .

~1/γ
 Δθ ! 2 /γ

ω B

2π /ω B  Δθ ! 2 /γ
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Figurn 6.2 Emission cones at variouS points of an accelerated particle's 
trajectory. 

the direction of observation. The distance As along the path can be 
computed from the radius of curvature of the path, a = As/AB. 

From the geometry we have A0 = 2/y,  so that As = 2 a / y .  But the radius 
of curvature of the path follows from the equation of motion 

AV 4 ym-  = - v x B ,  
A t  c 

Since (Av( = v A 0  and As = v At, we have 

A 0  qBsina 
As ymcv ' 

wB sin a ' 

-=- 

V a = -  

(6.8a) 

(6.8b) 

Note that this differs by a factor sina from the radius of the circle of the 
projected motion in a plane normal to the field. Thus A s  is given by 

2u 
yw, sin a 

As = (6.8~) 

The times t, and t, at which the particle passes points 1 and 2 are such 
that A s  = u(t,  - t , )  so that 

2 
y o B  sin a ' 

t , -  t ,x 

Let t f  and tt be the arrival times of radiation at the point of observation 

   R
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• To Fourier analyze the pulse shape, we need to calculate the interval of the arrival times of the 
pulse. Let’s consider a instantaneous rest frame of the electron.

The path length from point 1 to 2 is                  , where      is the radius of curvature of the path.

The equation of motion:

Since                                          , we find

Note that the curvature is different from the gyroradius. Therefore the path length is given by

Time interval that the particle passes from point 1 to 2:

Note that point 2 is closer than point by          . The difference of the arrival times of the pulse is

 Δs = RΔθ

  
Δt = t2 − t1 =

Δs
v
!

2
ω L sinα

Δs / c
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Note that this differs by a factor sina from the radius of the circle of the 
projected motion in a plane normal to the field. Thus A s  is given by 

2u 
yw, sin a 

As = (6.8~) 

The times t, and t, at which the particle passes points 1 and 2 are such 
that A s  = u(t,  - t , )  so that 

2 
y o B  sin a ' 

t , -  t ,x 

Let t f  and tt be the arrival times of radiation at the point of observation 

   R

 R

γ me
Δv
Δt

= e
c
v ×B

 Δv = vΔθ and Δs = vΔt

  
γ me

vΔθ
Δs /v

= e
c
vB sinα → Δθ

Δs
= eBsinα

γ mecv
= ω B

v
sinα → R = Δs

Δθ
= v
ω B sinα

  
Δs = 2R /γ = 2v

γω B sinα
= 2v
ω L sinα

 
Δt A = t2

A − t1
A = Δt − Δs

c
= Δt 1− v

c
⎛
⎝⎜

⎞
⎠⎟ =

2
ω L sinα

1− v
c

⎛
⎝⎜

⎞
⎠⎟ ≈

1
γ 2ω L sinα

← 1− v
c
≈ 1
2γ 2
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Therefore, the width of the observed pulses is smaller than the gyration by a factor     .

• Temporal pattern of received pulses:

• We define a critical frequency:

From the properties of Fourier transformation, we expect that the spectrum will be fairly broad, 
cutting off at frequencies like                                           .1/ Δt A ≈ω c ≈ γ

2ω L = γ
3ω B

ω c ≡
3
2
γ 2ω L sinα = 3

2
γ 3ω B sinα

Δt A = t2
A − t1

A ≈ 1
γ 2ω L sinα

= 1
γ 3ω B sinα

γ 3
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• We can derive an important property of the spectrum for the synchrotron radiation.

Remember that the electric field is a function of     , where     is a polar angle about the direction 
of motion, because of the beaming effect. Then we can write

Let time t = 0 and the path length s = 0 when the pulse is centered on the observer. Then, we find

Then we have

The time dependence of the electric field can be written as

The Fourier transform of the electric field is

Therefore, the power per unit frequency is a function of           : 

γθ θ

E(t)∝F(γθ )

  θ ≈ s /R and t ≈ (s /v)(1−v / c) ≈ (s /v) / (2γ 2 )

  
γθ ≈ γ s

R
= γ s

v
ω B sinα

⎛
⎝⎜

⎞
⎠⎟ = γ 2γ 2tω B sinα( )∝ω ct

E(t)∝ g(ω ct)

Ê(ω )∝ g ω ct( )eiωt dt
−∞

∞

∫ ← ξ ≡ω ct

= g ξ( )ei ω /ωc( )ξ dξ
−∞

∞

∫
ω /ω c P(ω )∝ Ê(ω )

2
= C1F

ω
ω c

⎛
⎝⎜

⎞
⎠⎟
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[Spectral Index for Power-law Electron Distribution]
• Often the number density of particles with energies between E and E + dE can be approximagely 

expressed in the form:

• The total power radiated per unit volume per unit frequency by such a distribution is given by

• Then, the spectrum is also a power law and the power-law spectral index s is related to the 
particle distribution index p by

N (γ )dγ = Cγ − pdγ (γ 1 < γ < γ 2 ) or N (E)dE = CE− pdE (E1 < E < E2 )

Ptot (ω ) = N (γ )P(ω )dγ
γ 1

γ 2∫

∝ γ − pF ω
ω c

⎛
⎝⎜

⎞
⎠⎟
dγ

γ 1

γ 2∫ ← x ≡ω /ω c ∝γ −2ω

∝ω −( p−1)/2 x−( p−3)/2F x( )dx
x1

x2∫

Ptot (ω )∝ω− s

∝ω−( p−1)/2
s = p −1

2
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[Spectrum of Synchrotron Radiation: A Detailed Discussion]
• We will use the formula derived in Chapter 3 (Lecture 4).

• The coordinate system is chosen so that the particle has velocity v along the x’ axis at time t’ = 0.

     is a unit vector along the y’ axis in the orbital (x’-y’) plane.

Let      represent the angle between the observing direction (n) and the velocity vector v at t’ = 0.

Then, an equivalent circular orbit at t’ is given by

Note that

 ε⊥

  

v(t ′) = v x̂′cosϕ + ŷ′sinϕ( ), where ϕ ≡ vt ′
R

= (ω B sinα )t ′

r(t ′) = R x̂′sinϕ − ŷ′cosϕ( )

  

n× n× β( ) = β n× n× x̂′( )cosϕ + n× n× ŷ′( )sinϕ{ }
= βn× n× x̂′( )cosϕ + β n(n ⋅ ŷ′)− ŷ′( )sinϕ
= ε!β sinθ cosϕ − ε⊥β sinϕ

  

(1) n× x̂′ = sinθ ŷ′, (2) n× ŷ′ = n× ε⊥ = ε!
(3) n ⋅ ŷ′ = 0, and (4) n ⋅ x̂′ = cosθ

Spectrum and Pohrization of Synchrotron Radbtion: A Derailed Discupsion 175 

Let us summarize the results of this simplified treatment of synchrotron 
radiation: We have shown that 

1. The angular distribution from a single radiating particle Lies close 
(within l / y )  to the cone with half-angle equal to the pitch angle. 

2. The single-particle spectrum extends up to somethmg of the order of a 
critical frequency wc. More precisely, the spectrum is a function of 
w / w ,  alone. 

3. For power law distribution of particle energies with index p over a 
sufficiently broad energy range, the spectral index of the radiation is 
s = (p - 1)/2. 

6.4 SPECTRUM AND POLARIZATION OF SYNCHROTRON 
RADIATION: A DETAILED DISCUSSION 

Consider the orbital trajectory in Fig. 6.4, where the origin of the coordi- 
nates is the location of the particle at the origin of retarded time t’=0, and 
a is the radius of curvature of the trajectory. The coordinate system has 
been chosen so that the particle has velocity v along the x axis at time 
t ’ = O ;  tl is a unit vector along they axis in the orbital (x -y )  plane, and 

Figure 6 4  Geometry for pohnzation of synchrotron mdbtion. A t  t =  0, the 
particle wlocity is along the x axis, and a is the mdiw of curooture of the 
tmjectov. 

  ε! = n× ε⊥
  

  

  

x̂′

 ̂y′ ≡ ε⊥

  
  
ϕ ≡ vt ′

R

  ẑ′

  

 R

θ

dW
dωdΩ

= e2ω 2

4π 2c
n× (n× β )exp iω t ′ − n ⋅r(t ′)

c
⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥
dt ′∫

2
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• We note that

   

t ′ − n ⋅r(t ′)
c

= t ′ − R

c
cosθ sinϕ ← n ⋅ x̂′ = cosθ

≈ t ′ − R

c
1− θ

2

2
⎛
⎝⎜

⎞
⎠⎟

ϕ − ϕ
3

6
⎛
⎝⎜

⎞
⎠⎟

← ϕ = vt ′
R

= t ′ 1− v
c
1− θ

2

2
⎛
⎝⎜

⎞
⎠⎟
1− (vt ′)

2

6R2
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ ← 1− v

c
≈ 1
2γ 2

≈ t ′ 1− 1− 1
2γ 2

⎛
⎝⎜

⎞
⎠⎟
1− θ

2

2
⎛
⎝⎜

⎞
⎠⎟
1− 1− 1

2γ 2
⎛
⎝⎜

⎞
⎠⎟

2
c2t ′2

6R2

⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

≈ t ′
2γ 2 2γ 2 − 2γ 2 −1( ) 1− θ

2

2
⎛
⎝⎜

⎞
⎠⎟
1− c

2t ′2

6R2
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ ← ct ′≪R, θ ≪1

≈ t ′
2γ 2 2γ 2 − 2γ 2 −1( ) 1− θ

2

2
− c

2t ′2

6R2
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

≈ t ′
2γ 2 2γ 2 − 2γ 2 −1( ) + 2γ 2 θ 2

2
+ c

2t ′2

6R2
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

= 1
2γ 2 1+ γ 2θ 2( )t ′ + c

2γ 2t ′3

3R2
⎡

⎣
⎢

⎤

⎦
⎥
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• We also note that

• We can identify the contribution to the received power in the two orthogonal polarized directions.
    

n× n× β( ) = ε!β sinθ cosϕ − ε⊥β sinϕ ← β ≈1
≈ ε! sinθ cosϕ − ε⊥ sinϕ

≈ −ε⊥ϕ + ε!θ = −ε⊥
vt ′
R

+ ε!θ

≈ −ε⊥
ct ′
R

+ ε!θ

dW
dωdΩ

= e2ω 2

4π 2c
n× (n× β )exp iω t ′ − n ⋅r(t ′)

c
⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥
dt ′∫

2

  

dW
dωdΩ

≡
dW!
dωdΩ

+ dW⊥

dωdΩ

dW!
dωdΩ

= e2ω 2

4π 2c
ct ′
R
exp iω

2γ 2 θγ
2t ′ + c

2γ 2t ′3

3R2
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥dt ′∫

2

dW⊥

dωdΩ
= e

2ω 2θ 2

4π 2c
exp iω

2γ 2 θγ
2t ′ + c

2γ 2t ′3

3R2
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥dt ′∫

2

  
t ′ − n ⋅r(t ′)

c
≈ 1
2γ 2 1+ γ 2θ 2( )t ′ + c

2γ 2t ′3

3R2
⎡

⎣
⎢

⎤

⎦
⎥

θγ
2 ≡ 1+ γ 2θ 2

 
y ≡ γ ct ′

Rθγ

, and η ≡
ωRθγ

3

3cγ 3

Define the following variables

  

dW!
dωdΩ

= e2ω 2

4π 2c
Rθγ

2

γ 2c
⎛

⎝⎜
⎞

⎠⎟

2

yexp 3
2
iη y + 1

3
y3⎛

⎝⎜
⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥
dt ′

−∞

∞

∫
2

dW⊥

dωdΩ
= e

2ω 2θ 2

4π 2c
Rθγ

γ c
⎛
⎝⎜

⎞
⎠⎟

2

exp 3
2
iη y + 1

3
y3⎛

⎝⎜
⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥
dt ′∫

2
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• The integrals are functions only of the parameter   . Since most of the radiation occurs at 
angle          ,      can be written as

The frequency dependence of the spectrum depends on      only through           .
The angular dependence uses      only through the combination      .

• The integrals can be expressed in terms of the modified Bessel functions of 1/3 and 2/3 order.

• The energy per frequency range radiated by the particle per complete orbit in the projected 
normal plane can be obtained by integrating over solid angle.

  

dW!
dωdΩ

= e
2ω 2

3π 2c
Rθγ

2

γ 2c
⎛

⎝⎜
⎞

⎠⎟

2

K2/3
2 η( )

dW⊥

dωdΩ
= e

2ω 2θ 2

3π 2c
Rθγ

γ c
⎛
⎝⎜

⎞
⎠⎟

2

K1/3
2 η( )

η
θ ≈ 0 η

  
η ≈η(θ = 0) = ωR

3cγ 3 =
ωv

3cγ 3ω B sinα
≈ ω
2ω c

whereω c ≡
3
2
γ 2eBsinα

mec
= 3
2
γ 3ω B sinα

ω /ω cω
γθθ

From 10.4.26, 10.4.31, and 10.4.32 of Abramovitz & Stegun (1965)
See Westfold 1959, ApJ, 130, 241
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• We note that the emitted radiation is almost completely confined to the solid angle shown shaded 
in the following figure, which lies within an angle          of a cone of half-angle    . Therefore, the 
integral over the solid angle can be approximated by

• Therefore,

• The emitted power per frequency is obtained by dividing

the orbital period of the charge                   :

178 Synchmtron Radiation 

Figurn 6 5  Synchrotron emission fmm a part& with pitch angle a. Radiation 
is confined to the shaded solid angle. 

The infinite limits on the integral are convenient and permissible, because 
the integrand is concentrated to small values of A0 about a, of order l / y .  
The above integrals can be reduced further (see Westfold, 1959 for details), 
and we can write 

where 

(6.3 la) 

(6.3 1 b) 

(6.3 lc) 

and, again x = w / w , .  

1/γ α

 

dW!
dω

=
dW!
dωdΩ

2π sinθ dθ
0

π

∫ ≈
dW!
dωdΩ

2π sinα dθ
−∞

∞

∫

  

dW!
dω

= 2e
2ω 2R2 sinα
3πc3γ 4 θγ

4K2/3
2 (η)dθ

−∞

∞

∫
dW⊥

dω
= 2e

2ω 2R2 sinα
3πc3γ 2 θγ

2K1/3
2 (η)dθ

−∞

∞

∫

 
P!(ω ) ≡

1
T
dW!
dω

, P⊥ (ω ) ≡
1
T
dW⊥

dω

T = 2π /ω B
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• Emitted power:

• Total emitted power per frequency:

 

P⊥ (ω ) ≡
3e3Bsinα
4πmec

2 F(x)+G(x)[ ]

P!(ω ) ≡
3e3Bsinα
4πmec

2 F(x)−G(x)[ ]

F(x) ≡ x K5/3 ξ( )dξ
x

∞

∫
G(x) ≡ xK2/3 x( )

x ≡ω /ω c

where

 
P(ω ) ≡ P!(ω )+ P⊥ (ω ) =

3e3Bsinα
2πmec

2 F(x)
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To convert this to emitted power per frequency we divide by the orbital 

period of the charge, T=2n/w,, 

The total emitted power per frequency is the sum of these: 

fi q3B sina 
2amc2 

P(w)  = 

(6.32a) 

(6.32b) 

(6.33) 

in agreement with our previous Eq. (6.18). The function F(x)  is plotted in 
Fig. 6.6. Asymptotic forms for small and large values of x are: 

x>> 1. 

(6.34a) 

(6.34b) 

To obtain frequency-integrated emission, or emission from a power-law 
distribution of electrons, it is useful to have expressions for integrals over 
the F and G functions. From Eq. 11.4.22 of Abramowitz and Stegun (1965) 

I 
I I I 

0 0.29 1 2 3 s 4 0 0.29 1 2 3 s 4 

Figure 46 Function describing the total power spectrum of synchtron emis- 
sion. Here x=o/o,. (Taken from Cinzburg, V. and Synnmtskii, S. l%S, Ann 
Rev. Asttvn. Astrophys., 3, 29%) 

 

F(x) ~ 4π
3Γ 1/ 3( )

x
2

⎛
⎝⎜

⎞
⎠⎟
1/3

, x≪1

F(x) ~ π
2

⎛
⎝⎜

⎞
⎠⎟
1/2

e− xx1/2 , x≫1
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• For a power-law distribution of electrons                                                   , we obtain the total 
power per unit volume per unit frequency:

• For the complete derivation of the formula, see Westfold (1959).

Ptot = N (γ )∫ P(ω )dγ

≡ 3e3CBsinα
2πmec

2 (p +1)
Γ p
4
+ 19
12

⎛
⎝⎜

⎞
⎠⎟ Γ

p
4
− 1
12

⎛
⎝⎜

⎞
⎠⎟

mecω
3eBsinα

⎛
⎝⎜

⎞
⎠⎟
−( p−1)/2

∝ω−( p−1)/2

N (γ )dγ = Cγ − pdγ (γ 1 < γ < γ 2 )
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[Polarization of Synchrotron Radiation]
• In general, the radiation from a single charge will be elliptically polarized. Fro any reasonable 

distribution of particles that varies smoothly with pitch angle, the radiation will be partially 
linearly polarized.

• Degree of linear polarization of a single energy:

Transition from Cjdotron to Synchmtnm Errpission 181 

Projection of magnetic 

% 
observer 

Figure 4 7  Decomposition of synchrotron pohrization uectors on the p k  of 
the sky. 

For particles with a power law distribution of energies, Eq. (6.20), the 
degree of polarization can be shown to be (see Problem 6.5a) 

(6.38) 

6.6 TRANSITION FROM CYCLOTRON TO SYNCHROTRON 
EMISSION 

It is interesting to follow the development of the typical synchrotron 
spectrum as the electron’s energy is varied from the nonrelativistic through 
the highly relativistic regimes. Let us consider both the electric field at the 
observation point and the associated spectrum of radiation. For low 
energies the electric field components vary sinusoidally with the same 
frequency as the gyration in the magnetic field, and the spectrum consists 
of a single line, as shown in Figs. 6.8a and 6.8b (see Problem 3.2). 

When v /  c increases, higher harmonics of the fundamental frequency, 
wB, begin to contribute. It should be clear that the general spectrum, in 
fact, must be a superposition of contributions at integer multiples of a,, 
since there is periodicity in time intervals T=27r/ws. Problem 3.7 demon- 
strates the general property that a circulating charge produces radiation at 
harmonics of the fundamental and that increasing harmonics contribute at 

 
Π(ω ) ≡

P⊥ (ω )− P!(ω )
P⊥ (ω )+ P!(ω )

= G(x)
F(x)
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• For particles with a power law distribution of energies:

• For particles of a single energy, the polarization degree of the frequency integrated radiation is

Π(ω ) =
G(x)γ − p dγ∫
F(x)γ − p dγ∫

← γ ∝ x−1/2

=
G(x)x( p−3)/2 dx∫
F(x)x( p−3)/2 dx∫

= (p +1) / 2
2

1
p − 3
4

+ 4
3

= p +1

p + 7
3

xµF(x)dx
0

∞

∫ = 2µ+1

µ + 2
Γ µ
2
+ 7
3

⎛
⎝⎜

⎞
⎠⎟ Γ

µ
2
+ 2
3

⎛
⎝⎜

⎞
⎠⎟

xµG(x)dx
0

∞

∫ = 2µΓ µ
2
+ 4
3

⎛
⎝⎜

⎞
⎠⎟ Γ

µ
2
+ 2
3

⎛
⎝⎜

⎞
⎠⎟

Π =
G(x)dx∫
F(x)dx∫

= p +1

p + 7
3

← p = 3

= 3
4
= 75%
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[Transition from Cyclotron to Synchrotron Emission]
• For low energies, the electric 

field components vary 
sinusoidally with the same 
frequency as the gyration in the 
magnetic field. The spectrum 
consists of a single line.

• When v/c increases, higher 
harmonics of the fundamental 
frequency begin to contribute.

• For very relativistic velocities, 
the originally sinusoidal form of 
E(t) has now become a series of 
sharp pulses, which is repeated 
at time intervals             . The 
spectrum now involves a great 
number of harmonics, the 
envelope of which approaches 
the form of the function F(x).

182 Symhcrotron Radiation 

( i l l  

Figutv 48a 
magnetic fi&i (cyclotron radiation}. 

Time dependence of electric field fmm  slow^ mooing partick in a 

I 
V)) 
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a strength proportional to increasing powers of u / c  for u/c<<l. For 
example, at slightly relativistic velocities, Fig. 6.8 becomes Fig. 6.9. Here 
we have adopted the convention that the electric field is positive as the 
particle approaches the observer. We see that the positive phase of the 
electric field has become somewhat sharper and more intense relative to 
the negative phase (Doppler effect). There is now a substantial amount of 
radiation at the first harmonic of a, (i.e., 2~0,). 

Finally, for very relativistic velocities, u-C, we have Fig. 6.10. The 
originally sinusoidal form of E ( t )  has now become a series of sharp pulses, 
which are repeated at time intervals 2m/a,. The spectrum now involves a 
great number of harmonics, the envelope of which approaches the form of 
the function F(x).  As soon as the frequency resolution becomes large with 
respect to wB, or if other physical broadening mechanisms fill in the spaces 
between the lines, we approach the results derived earlier. One such 
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physical broadening mechanism occurs for a distribution of particle en- 
ergies; then the gyration frequency o, is proportional to l / y ,  so that the 
spectra of the particles do not fall on the same lines. Another effect that 
will cause the spectrum to become continuous is that emission from 
different parts of the emitting region may have different values and 
directions for the magnetic field, so that the harmonics fall at different 
places in the observed spectrum. 

The electric field received by the observer from a distribution of par- 
ticles consists of a random superposition of many pulses of the kind 
described here. The net result is a spectrum that is simply the sum of the 
spectra from the individual pulses (see Problem 3.6). 
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6.7 DISTINCTION BETWEEN RECEIVED AND EMITTED 
POWER 

In about 1968 (e.g., Pacholczyk, 1970; Ginzburg and Syrovatshi, 1969), it 
was noticed that a proper distinction between received and emitted power 
had not been made. (In looking at references before then check your 
formulas carefully.) The problem is that the received pulses are not at the 
frequency wB but at an appropriately Doppler-shifted frequency, because 
of the progressive motion of the particle toward the observer. This can be 
seen clearly in Fig. 6.11. If T= 27r/wB is the orbital period of the projected 
motion, then time-delay effects (cf. 94.1), will give a period between the 
arrival of pulses TA satisfying 

2a . 
X-sin'cr. 

*B 
(6.39) 
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(2) The emitted power was found by dividing the energy by the period T. But the received power 
must be obtained by dividing by     . Thus we have                        .

However, these corrections are not important for most cases of interest.

• If                     is the orbital period of the projected 
motion, then time-delay effects will give a period 
between the arrival of pulses       satisfying

Therefore, the fundamental observed frequency is

-                 rather than       .

• Two modifications to the preceding results:

(1) Spacing of the harmonics is                  . For extreme 
relativistic particles this is not important, because one 
sees a continuum rather than the harmonic structure. Note 
that we did take the Doppler effects in deriving the pulse 
width         and consequently for the critical 
frequency      . The continuum radiation is still a function 
of           .

[Distinction between Received and Emitted Power]
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The fundamental observed frequency is thus wB/sin2a rather than wB. This 
leads to two modifications to the preceding theory, neither of which is 
serious, fortunately: 

1. The first is that the spacing of the harmonics is w,/sin2a not wB. For 
extreme relativistic particles this is not important, because one sees a 
continuum rather than the harmonic structure. In deriving the expres- 
sion for the pulse width At, and consequently for the critical frequency 
w,, we did take the Doppler compression of the radiation properly into 
account. Thus the continuum radiation is still a function F(w/w,). 

2. The second comes from the fact that we found the emitted power by 
dividing the energy by the period T of the gyration. This is correct, but 
the received power must be obtained by dividing the energy by T,. 
Thus, we have 

pe 
sin2 a 

P r = - .  (6.40) 

The question arises, should we include the sin2& factor in determining 
the received power? The answer depends on the physical case. Usually one 

T = 2π /ω B

TA

  

TA = T 1−
v!
c
cosα⎛

⎝⎜
⎞
⎠⎟
= T 1− v

c
cos2α⎛

⎝⎜
⎞
⎠⎟

≈ T 1− cos2α( ) = 2πω B

sin2α

ω B / sin
2α ω B

ω B / sin
2α

ΔtA
ω c

ω /ω c

TA Pr = Pe / sin
2α

18



[Synchrotron Self-Absorption]
• Opacity

We first need to generalize the Einstein coefficients to include continuum states.

For a given energy of a photon        there are many possible transitions, meaning that the 
absorption coefficient should be obtained by summing over all upper states 2 and lower stats 1:

The profile function            is essentially a Dirac delta-function:

In terms of the Einstein coefficients, the emitted power is given by

Absorption coefficient due to stimulated emission:

True absorption coefficient:

hν

αν =
hν
4π

n(E1)B12 − n(E2 )B21[ ]φ21(ν )
E2
∑

E1
∑

φ21(ν ) φ21(ν ) = δ ν − E2 − E1
h

⎛
⎝⎜

⎞
⎠⎟

P(ν ,E2 ) = hν A21φ21(ν )
E1
∑

= 2hν 3 / c2( )hν B21φ21(ν )
E1
∑

A21 = 2hν 3 / c2( )B21

− hν
4π

n(E2 )B21φ21(ν )
E2
∑

E1
∑ = − c2

8πhν 3 n(E2 )P(ν ,E2 )
E2
∑

hν
4π

n(E1)B12φ21(ν )
E2
∑

E1
∑ = c2

8πhν 3 n(E2 − hν )P(ν ,E2 )
E2
∑ B12 = B21
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Therefore, we have

Let                   number of electrons per volume with momenta in          about  p.

Number density of quantum states  = 

Electron density per quantum state =

Therefore, we can make the replacements

Then, the absorption coefficient becomes

where      is the momentum corresponding to energy              .

αν =
c2

8πhν 3 n(E2 − hν )− n(E2 )[ ]P(ν ,E2 )
E2
∑

f (p)d 3p ≡ d 3p

g d
3p
h3

(g = 2 for spin 1/2 particles)
h3

g
f (p)

∑2 →
g
h3

d 3p∫ , n(E2 )→
h3

g
f (p)

αν =
c2

8πhν 3 d 3p2 f (p*)− f (p2 )⎡⎣ ⎤⎦P(ν ,E2 )∫
p* E2 − hν
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• For a thermal distribution of particles

Thus, the absorption coefficient is

Therefore, we obtained the Kirchhoff’s Law for thermal emission.

f (p) = K exp − E(p)
kT

⎡
⎣⎢

⎤
⎦⎥

f (p*)− f (p2 ) = K exp − E2 − hν
kT

⎡
⎣⎢

⎤
⎦⎥
− K exp − E2

kT
⎡
⎣⎢

⎤
⎦⎥

= f (p2 ) e
hν /kT −1( )

αν =
c2

8πhν 3 ehν /kT −1( ) d 3p2 f (p2 )P(ν ,E2 )∫

= 1
4π

c2

2hν 3 ehν /kT −1( )4π jν

αν =
jν

Bν (T )
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• For an isotropic, and extremely relativistic electron distribution:

Then

Assume that               (in fact, a necessary condition for the application of classical 
electrodynamics) and expand to first order in      . 

• For a power law distribution of particles:

E = pc, N (E)dE = f (p)4π p2dp, d 3p = 4π p2dp

αν =
c2

8πhν 3 dEP(ν ,E)E2 N (E − hν )
(E − hν )2

− N (E)
E2

⎡
⎣⎢

⎤
⎦⎥∫

 hν ≪ E
hν

αν = − c2

8πν 2 dEP(ν ,E)E2 ∂
∂E

N (E)
E2

⎡
⎣⎢

⎤
⎦⎥∫

− d
dE

N (E)
E2

⎡
⎣⎢

⎤
⎦⎥
= (p + 2)CE−( p+1) = (p + 2)N (E)

E

αν =
(p + 2)c2

8πν 2 dEP(ν ,E)N (E)
E∫

∝ν −2 dEF(x)E
− p

E∫ ← x ≡ ω
ω c

∝νγ −2 ∝νE−2

∝ν−2 ν1/2x−3/2 dxF(x)ν −( p+1)/2x( p+1)/2∫
∝ν −( p+4)/2
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Note                        indicates that the synchrotron emission is optically thick at low frequencies 
and optically thin at high frequencies.

The source function is

For optically thin synchrotron emission,

For optically thick emission,

Therefore, the synchrotron spectrum from a power-law distribution of electrons is

Sν =
jν
αν

= P(ν )
4παν

∝ν 5/2

αν ∝ν−( p+4)/2

Iν ∝ jν
Iν ∝ Sν
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gives 

(6.53) 

The source function can be found from 

(6.54) 

using Eq. (6.53). A simple way of deriving this latter result is to note that 
S, can be written as S, a v2E where E is a mean particle energy [cf. Eqs. 
(6.52) and (6.54). The appropriate value for E is the energy of those 
electrons whose critical frequency equals v, that is, E2a vc = v, so that one 
obtains the proportionality given in Eq. (6.54). It is of some interest that 
the source function is a power law with an index - $, independent of the 
value of p .  It should be particularly noted that this index is not equal to 
- 2, the Rayleigh-Jeans value, because the emission is nonthennal. 

For optically thin synchrotron emission, the observed intensity is pro- 
portional to the emission function, while for optically thick emission it is 
proportional to the source function. Since the emission and source func- 
tions for a nonthermal power law electron distribution are proportional to 
v - ( ~ - ’ ) / ~  and v 5 / 2 ,  respectively, [cf. eqs. (6.22a) and (6.54)] we see that the 
optically thick region occurs at low frequencies and produces a low- 
frequency cutoff of the spectrum (see Fig. 6.12). 

log v 

Figuw 6 1 2  Synchrotron spectrum from a power-law distribution of electrons. 

      
ν −( p−1)/2

      
ν 5/2
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Astrophysical Example
• Crab nebula

that exceeds the extrapolation of the continuum emission from
the radio band. This component is best described by a single
temperature of 46 K (Strom & Greidanus 1992). Unfortunately,
the spatial structure of the dust emission remains unresolved,
which introduces uncertainties for the model calculations. We
have assumed the dust to be distributed like the filaments, with a
scale length of 1A3. Sophisticated analyses of data taken with
the Infrared Space Observatory (ISO) satellite indicates that the
dust emission can be resolved (Green et al. 2004). The resulting
size seems to be consistent with the value assumed here.

3. Cosmicmicrowave background (CMB).—Given the low en-
ergy of the CMB photons, scattering continues to take place in
the Thomson regime even for electron energies exceeding
100 TeV (Aharonian & Atoyan 1995).

The influence of stellar light has been found to be negligible
(Atoyan & Aharonian 1996). The optical line emission of
the filaments is spatially too far separated from the inner region
of the nebula, where the very energetic electrons are injected
and cooled. However, in the case of acceleration taking place
at different places in the nebula, the line emission could be
important.

Given the recent detection of a compact component emitting
millimeter radiation (Bandiera et al. 2002), this radiation field
is included as seed photons for the calculation of the inverse
Compton scattering. A simple model calculation has been
performed that follows the phenomenological approach sug-
gested by Hillas et al. (1998).

In brief , the observed continuum emission from the nebula
up to MeVenergies is assumed to be synchrotron emission. By
setting the magnetic field to a constant average value within the
nebula, a prompt electron spectrum can be constructed that
reproduces the observed SED. Based on the measured size of
the nebula at different wavelengths, the density of electrons
and the produced synchrotron photons can be easily calculated
in the approximation that the radial density profile follows a
Gaussian distribution.

With this simple model, it is straightforward to introduce
additional electron components and seed photon fields to cal-
culate the inverse Compton–scattered emission of the nebula.
The model is described in more detail by Horns & Aharonian
(2004).

In order to extract the underlying electron spectrum, a
broadband SED is required (see Fig. 9). For the purpose of
compiling and selecting available measurements in the litera-
ture, mostly recent measurements have been chosen. The prime
goal of the compilation is to cover all possible wavelengths
from radio to gamma ray. The radio data are taken from Baars
& Hartsuijker (1972) and references therein, millimeter data
from Mezger et al. (1986) and Bandiera et al. (2002) and ref-
erences therein, the infrared data obtained with IRAS in the far-
to mid-infrared band from Strom & Greidanus (1992) and
those with ISO in the adjacent mid- to near-infrared band from
Douvion et al. (2001).

Optical and near-UV data from the Crab Nebula require
some extra considerations. The reddening along the line of
sight toward the Crab Nebula is a matter of some debate. For
the sake of homogeneity, data in the optical (Véron-Cetty &
Woltjer 1993) and near-UVand UV (Hennessy et al. 1992; Wu
1981) have been corrected applying an average extinction
curve for R ¼ 3:1 and E B" Vð Þ ¼ 0:51 (Cardelli et al. 1989).

The high-energy measurements of the Crab Nebula have
been summarized recently in Kuiper et al. (2001), to the extent
of including ROSAT HRI, BeppoSAX LECS, MECS, and PDS,

COMPTEL, and EGRET measurements covering the range
from soft X-rays up to gamma-ray emission. For the interme-
diate range of hard X-rays and soft gamma-rays, data from the
Earth occultation technique with the BATSE instrument have
been included (Ling & Wheaton 2003).

The observations of the Crab Nebula at VHE (E > 100 GeV)
have been carried out with a number of ground-based detec-
tors. Most successfully, Cerenkov detectors have established
the Crab Nebula as a standard candle in the VHE domain. A
summary of the measurements is presented in Aharonian et al.
(2000b). Recently, the MILAGRO group has published a flux
estimate that is consistent with the measurement presented here
(Atkins et al. 2003).

The results from different detectors reveal underlying sys-
tematic uncertainties in the absolute calibration of the instru-
ments. To extend the energy range covered in this work (0.5–
80 TeV), in Figure 9 results from nonimaging Cerenkov
detectors, such as CELESTE (open circle), STACEE ( filled
square), and GRAAL (open diamond ) at lower energy thresh-
olds have been included (de Naurois et al. 2002; Oser et al.
2001; Arqueros et al. 2002), converted into a differential flux
assuming a power law for the differential energy spectrum
with a photon index of 2.4. For energies beyond 100 TeV,
an upper limit on the integral flux from the CASA-MIA air
shower array has been added (Borione et al. 1997) assuming a
power law with a photon index of 3.2, as predicted from the
model calculations.

The resulting broadband SED is shown in Figure 9, including
as solid lines the synchrotron and inverse Compton emission,
as calculated with the electron energy distribution assumed
in this model. Also indicated as a dotted line in Figure 9 is the
thermal excess radiation, which is assumed to follow amodified
blackbody radiation distribution with a temperature of 46 K.
Finally, the emission at millimeter wavelengths is indicated by a
thin dashed line (see also x 5.2). The thick dashed line indicates
the synchrotron emission excluding the thermal infrared and
nonthermal millimeter radiation. The inverse Compton emis-
sion shown in Figure 9 includes the contribution from milli-
meter-emitting electrons (see x 5.2).

Besides the SED, an estimate of the volume of the emitting
region is required to calculate the photon number density in
the nebula to include as seed photons for inverse Compton

Fig. 9.—Calculations described in x 5 (curves). For a wide range of ener-
gies, recent measurements have been compiled from the literature (see the text
for further details and references).
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Dots: modified blackbody with T = 46 K.
Thin dashed line: emission at mm wavelengths
Thick dashed line: synchrotron emission

Aharonian et al. (2004)

or possibly injected into a volume similar to that of the soft
X-ray–emitting electrons.

The extra component can be explained by a population of
electrons with a minimum Lorentz factor of !104 and a
maximum Lorentz factor of !106, with a power-law index p
close to 2 (dN=d! ¼ N0!#p). In order to inject such an electron
distribution, a small-scale shock is required at a distance of
!1014 cm from the pulsar. The maximum Lorentz factor
reachable in the downstream region scales with the curvature
radius of the shock. The minimum Lorentz factor, according
to the Rankine-Hugoniot relations for a shock at 1014 cm,
is !104, provided that the spectral index is !2 for the parti-
cle distribution. In recent MHD calculations (Bogovalov &
Khangoulian 2002; Komissarov & Lyubarsky 2003), the ob-
served jet-torus morphology of the Crab Nebula is reproduced
by invoking a modulation of the flow speed with sin2" (" is the
polar angle with respect to the rotation axis of the pulsar). This
assumption is motivated by the solution for the wind flow in
the case of an oblique rotator, assuming a split monopole
magnetic field configuration (Bogovalov 1999). According to
the calculation of Komissarov & Lyubarsky (2003), a multi-
layered shock forms. In the proximity of the polar region, the
shock would form close to the pulsar and could be responsible
for the injection of millimeter-emitting electrons.

This shock region has remained undetected because of the
angular proximity (10 mas) to the pulsar and the fact that the
continuum emission is predominantly produced in the milli-
meter and submillimeter wavelength bands. The inner shock is
in principle visible with high-resolution observations with
interferometers at millimeter wavelengths.

Intriguingly, there is observational evidence for ongoing
injection of electrons radiating at 5 GHz frequency that
show moving, wisplike structures similar to the optical wisps
(Bietenholz & Kronberg 1992; Bietenholz et al. 2001). The
injection of radio- and millimeter-emitting electrons into the
nebula could, e.g., take place at additional shocks much closer
to the pulsar than the previously assumed 1400.

The additional compact millimeter component is of im-
portance for the inverse Compton component. The electron
population with ! ¼ 104 105, introduced here to explain the
excess at millimeter wavelengths, produces via inverse
Compton scattering gamma rays between 1 and 10 GeV. The
contribution is rather small (10%) but could easily become
comparable to that of the other components if the millimeter-
emitting region is smaller than assumed here. In this case, the
EGRET data points would be better described by the model.
Moreover, the millimeter component contributes seed photons
for inverse Compton scattering in the Thomson regime, which
contributes substantially at energies of a few TeV.

The combined inverse Compton spectrum is shown in
Figure 10, decomposed according to the different seed photons
(synchrotron , IR, millimeter, and CMB) and the additional in-
verse Compton component from the millimeter-emitting elec-
trons. Clearly, the synchrotron emission present in the nebula
is the most important seed photon field present. At high en-
ergies (E > 10 TeV), the millimeter radiation contributes sig-
nificantly to the scattered radiation.

5.3. Comparison of the Model with Data

The agreement of the calculated inverse Compton spectrum
with the data is excellent (see Fig. 10). The only free parameter
of the model calculation is the magnetic field, which in turn
can be determined from the data by minimizing the #2 of the
data (see x 5.4). The resulting value of #2 is slightly lower

than for the power-law fit: #2
red dofð Þ ¼ 0:96 14ð Þ for the in-

verse Compton model, as compared with #2
red dofð Þ ¼ 1:3 13ð Þ.

However, the small change in #2 does not convey the full in-
formation. The slope of the spectrum is expected to change
slightly with energy for the inverse Compton model. For the
purpose of testing this gradual softening predicted in the
model, the differential power law was calculated from the data
points by computing the slope between two data points with
index i, j separated by 0.625 in decadic logarithm:

! Eð Þ ¼ ln"i # ln"j

ln Ei # ln Ej
; ð4Þ

E ¼ exp 0:5 ln Ei þ ln Ej

! "# $
; ð5Þ

$! ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
$" ið Þ="i

! "2þ $" jð Þ="j

! "2q

ln Ei # ln Ej
: ð6Þ

For the sake of simplicity, the error on Ei , Ej is ignored. The
effect of including the statistical error on Ei , Ej is negligible.
The interval of 0.625 in decadic logarithm gives sufficient le-
verage to calculate a reliable slope, and at the same time it is
small enough to resolve the features. The expected slope is
calculated from the model for both cases, including and ex-
cluding the millimeter seed photon field. The result is shown in
Figure 11. The straight dashed line shows the predicted slope,
as given by the parameterization of Hillas et al. (1998), and the
open circles indicate the predictions from Aharonian & Atoyan
(1998), which are consistent with the calculation described
here. Note that the data points are independent. As is clearly
seen, the expected and measured changes in slope agree nicely.
The systematic and energy-dependent deviation from the con-
stant photon index determined by the power-law fit is evi-
dent. Ignoring the millimeter component gives, on average,
a slightly softer spectrum, with the same softening with in-
creasing energy. It is remarkable how little the slope is ex-
pected to change over exactly the energy range covered by the
observations. At energies below 200 GeV, a strong flattening

Fig. 10.—Inverse Compton spectrum decomposed into different compo-
nents, as defined by the target seed photons. The synchrotron radiation dom-
inates at all energies. However, the millimeter excess is of equal importance
above 30 TeV. Eventually, beyond 100 TeV, the microwave background con-
tributes significantly to the overall spectrum. Note that the contribution of the
millimeter radiation dominates over the dust component at all energies. Also
shown is the inverse Compton component from the electrons emitting the
synchrotron millimeter radiation. The symbols are the same as for Fig. 9

HEGRA OBSERVATIONS OF CRAB NEBULA AND PULSAR 909No. 2, 2004

24



P1: RPU/... P2: RPU

9780521846561c08.xml CUFX241-Bradt October 3, 2007 17:2

8.3 Frequency of the emitted radiation 295

Fig. 8.3: Photographs of the Crab nebula in polarized light with the polarizer at different orienta-
tions. The arrows show the directions or planes of the transmitted transverse electric vector. Note
the changing brightness pattern from photo to photo. The nebula has angular size 4′ × 6′ and is
∼6 000 LY distant from the solar system. North is up and east to the left. The pulsar is the southwest
(lower right) partner of the doublet at the center of the nebula. [Palomar Observatory/CalTech]

The degree of magnetic field organization is reflected in the degree of the polarization. At
the radio frequency of 10 GHz, the degree of linear polarization from the Crab nebula as a
whole is ∼5%. Radiation from local regions of the Crab would be more highly polarized.

Synchrotron radiation is not limited to young supernova remnants such as the Crab nebula.
The general galactic background of radio emission is polarized owing to electron spiraling
in galactic magnetic fields. The lobes of radio-emitting plasma previously ejected from the
active nuclei of galaxies (AGN) are also synchrotron emitters as are jets of relativistic particles
from AGN (Section 7.6).

Polarization of radiation can arise for other reasons. For example, the interstellar grains
(dust) in the Galaxy tend to align themselves with the local magnetic field and thereby to
slightly polarize the visible starlight passing through them (AM, Chapter 10).

8.3 Frequency of the emitted radiation

The q (v × B) force on a charge will cause it to spiral around the magnetic field lines in a
corkscrew pattern if there are velocity components both along and normal to the local B field
lines. If there is no component along the field lines, and if the field is uniform in that region
of space, the motion will be circular.

Bradt, Astrophysics Processes
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