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Equation of Motion

e Equation of motion of an electron in a uniform magnetic field:
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dt
dv —e d’v eB
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[Spectrum of Synchrotron Radiation: A Qualitative Discussion]

Observer

* Because of beaming effects the emitted radiation fields appear to be concentrated in a narrow set
of directions about the particle’s velocity.

The observer will see a pulses of radiation confined to a time interval much smaller than the
gyration period. The spectrum will thus be spread over a much broader frequency range than on
of order w;.

The cone of emission has an angular width ~ 1/ . Therefore, the observer will sees emission over
the angular range of AG=2/y.

e The radiation appears beamed toward the direction of the observer in a series of pulses spaced in
time 27 /w, apart, but with each pulse lasting only A@=2/7y.




* To Fourier analyze the pulse shape, we need to calculate the interval of the arrival times of the
pulse. Let’s consider a instantaneous rest frame of the electron.

The path length from point 1 to 2 is As="RA6 , where R is the radius of curvature of the path.

The equation of motion: A
V e

m—=—vXB
r ‘At ¢

Since |AV| =vA0O and As=vAr ,we find

vVAO e : AO eBsina o, . As v
m, =—vBsino — = =—>sind > R=——= :
As/v ¢ As  ymecv v AO  wysino
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Note that the curvature 1s different from the gyroradius. Therefore the path length 1s given by

As=2R /[y = 2?{ = 2?)
YW, sinQ  , Sino

Time interval that the particle passes from point 1 to 2:

As 2
At=t,—t =—=——
v @, sina

Note that point 2 is closer than point by As/c. The difference of the arrival times of the pulse 1s

A 2 1 1
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Therefore, the width of the observed pulses 1s smaller than the gyration by a factor ¥ ;

e Temporal pattern of received pulses:

e
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* We define a critical frequency: 3 3

w, = Eyza)L sino = 573603 sinot

From the properties of Fourier transformation, we expect that the spectrum will be fairly broad,
cutting off at frequencies like 1/At" =w_=7v’w, =y w,.




 We can derive an important property of the spectrum for the synchrotron radiation.

Remember that the electric field 1s a function of Y9, where 6 1s a polar angle about the direction
of motion, because of the beaming effect. Then we can write

E(1) o< F(Y0)
Let time ¢ = 0 and the path length s = 0 when the pulse i1s centered on the observer. Then, we find

O=s/R and t=(s/v)1—-v/c)=(s/v)/(2y?)

Then we have

Y0 = yi = y(ia)B sinoc) = y(2y2ta)3 sinoc) o<t
R v

The time dependence of the electric field can be written as

E(t) < g(w,t)
The Fourier transform of the electric field is
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[Spectral Index for Power-law Electron Distribution]

Often the number density of particles with energies between E and E + dE can be approximagely
expressed in the form:

Ny)dy=Cy*dy (y,<y<vy,) or N(E)YdE=CE"dE (E,<E<E,)
The total power radiated per unit volume per unit frequency by such a distribution is given by

Po(@)= [ “N()P(@)dy
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Then, the spectrum is also a power law and the power-law spectral index s is related to the
particle distribution index p by
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[Spectrum of Synchrotron Radiation: A Detailed Discussion]

 We will use the formula derived in Chapter 3 (Lecture 4).

J.n X (M X ﬁ)exp{ia)(t’ X r(t,)ﬂdt'

C

dw _eza)2
dodQ 4r’c

e The coordinate system i1s chosen so that the particle has velocity v along the x’ axis at time " = 0.
€, 1s a unit vector along the y’ axis in the orbital (x’-y’) plane.
Let 8 represent the angle between the observing direction (n) and the velocity vector v att’ = 0.
Then, an equivalent circular orbit at ¢’ 1s given by o

vt’ . A
= (w,sino)t’

v(t')= v(&’cosgo + &’singo) , Where @ =

r(t’)=R(X'singp—§y cosp)
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3)n-y' =0, and (4)n-X"=cos6b
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= ¢ Bsin@cosp—e€ [sing




e We note that
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e We also note that
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* We can identity the contribution to the received power in the two orthogonal polarized directions.

dw _ dw, N dw,
dodQ dodQ  dodQ
daw, e’ |fct’ i

=—[ S exp| -
dodQ 4ncl’ R 2y
aw, ew’6’ o)

= : exp ~| 6
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Define the following variables
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* The integrals are functions only of the parameter 7. Since most of the radiation occurs at
angle 6 =0, 7 can be written as
R ®v 0 3y’eBsino 3

n=nO=0)=1"";= - here @, = -2 w,s
3¢y’ 3cy’w,sina 20, Werew“zz mc _27/6038“10(

The frequency dependence of the spectrum depends on @ only through @ /®..
The angular dependence uses 6 only through the combination 9.

* The integrals can be expressed in terms of the modified Bessel functions of 1/3 and 2/3 order.

From 10.4.26,10.4.31, and 10.4.32 of Abramovitz & Stegun (1965)

AW 2w RE2Y See Westfold 1959, ApJ, 130, 241
L y 2

dwdQ 37T2C( yzc ] 2/3 (77)

aw, _co’e’(R6, ), ()

dodQ 3n%c \ yc ) "

e The energy per frequency range radiated by the particle per complete orbit in the projected
normal plane can be obtained by integrating over solid angle.




* We note that the emitted radiation 1s almost completely confined to the solid angle shown shaded
in the following figure, which lies within an angle 1/y of a cone of half-angle o . Therefore, the
integral over the solid angle can be approximated by

dW = dW, dW

R —”27[81n9d9zjm—”277581n06d9
do 70 dwdS —~ dwd{ T
””..r,,#,;;;;;,’

e Therefore,

dVVH 2¢°W R sing ¢~ 4 -2

do  3ncy’ | _eiKinmao

dW, 20’ R°sino ¢~

o ney J_erKismas

e The emitted power per frequency is obtained by dividing

the orbital period of the charge T =27 /w,:

dW
R@===, P (0)==T0
T do T dw
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e Emitted power:

P (0)= */i(;_i Si‘;a [F(x)+G ()]
3¢’ Bsi
P(w)= {fn z [P -6)]

e Total emitted power per frequency:

P() = B(0)+ P, ()= ﬁ;ﬂz Sf;“ F(x)

4 x )"
F(x)~ — | , xxl
)\ 2

J3r(1/3

1/2
F(x)~(§j e "x'"?, x>1

where

Fix)

F(x)= xJXwKS/s (&)as
G(x) = xK,;(x)
X=0/0,
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e For a power-law distribution of electrons N(y)dy =Cy~"dy (y, <y <v,), we obtain the total
power per unit volume per unit frequency:

P, = [ N)P(@)dy
3 . —(p-1)2
_ J3¢’CBsina F(p +£jr(p 1 )( m,co )

“2mct(p+]) (412 3eBsino
—(p-1)/2

4 12
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* For the complete derivation of the formula, see Westfold (1959).
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[Polarization of Synchrotron Radiation]

* In general, the radiation from a single charge will be elliptically polarized. Fro any reasonable
distribution of particles that varies smoothly with pitch angle, the radiation will be partially
linearly polarized.

Projection of magnetic
field onto sky

/

Radiating
particle

To

T~

observer

1

Plane of the sky

e Degree of linear polarization of a single energy:

_ PJ_((I))—P”(G)) _ G(X)
P (w)+F(w) F(x)

I(w)




e For particles with a power law distribution of energies:

(G(x)yy"d
I[I(w)=" ’ }/( Y o< X
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’ o 21 u 7 u 2
d u : PR R — —
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Fora [ eom—rr{ L (2.2)
C(p+D/2 1 ’ 2 3/ \2 3
B 2 p-3 4

3

-1/2

_+
4

e For particles of a single energy, the polarization degree of the frequency integrated radiation is

[Gwdx iy

- JF(x)dx p+Z
3

IT — p=3

=2 _ 759
4
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[Transition from Cyclotron to Synchrotron Emission]

e For low energies, the electric
field components vary
sinusoidally with the same A st A Pl
frequency as the gyration in the
magnetic field. The spectrum
consists of a single line. / \ / .

/ > > W/ wy

e When v/c increases, higher
harmonics of the fundamental
frequency begin to contribute.

(b)

e For very relativistic velocities, A
the originally sinusoidal form of
E(t) has now become a series of / \
sharp pulses, which is repeated /\ ., .
at time intervals 27 /@, . The s — ! 2 >
spectrum now involves a great
number of harmonics, the Plo) A

envelope of which approaches (A S
the form of the function F(x). I\ i

17



[Distinction between Received and Emitted Power]

e If T=2n/w, is the orbital period of the projected
motion, then time-delay effects will give a period
between the arrival of pulses T, satisfying

Y v o2
TAzT(l——cosalzT(l——cos OC)
C C

%
~ T(l—coszoc) = sin‘«
wB

Therefore, the fundamental observed frequency is
@, /sin” o rather than Q.
e Two modifications to the preceding results:

(1) Spacing of the harmonics is @, /sin’ o . For extreme
relativistic particles this 1s not important, because one
sees a continuum rather than the harmonic structure. Note
that we did take the Doppler effects in deriving the pulse
width Az, and consequently for the critical
frequency @,. The continuum radiation is still a function

of w/w,.

A B

To observer

(2) The emitted power was found by dividing the energy by the period 7. But the received power
must be obtained by dividing by 7, . Thus we have P =P /sin’ .

However, these corrections are not important for most cases of interest.




[Synchrotron Self-Absorption]

* Opacity

We first need to generalize the Einstein coefficients to include continuum states.

For a given energy of a photon Av there are many possible transitions, meaning that the
absorption coefficient should be obtained by summing over all upper states 2 and lower stats 1:

= 2 S [E B, = 1(E)By 10, v)

E E

The profile function ¢,,(v) is essentially a Dirac delta-function: ¢,,(v)=0 (v _E-E }:El )

In terms of the Einstein coefficients, the emitted power 1s given by

P(v.E,)= hvz Ay, (V) < A, = (2hv3 /c* )321

E,

=(20v* 1) hv Y, By, (V)

Absorption coefficient due to stimulated emission:

hv ¢
o 2 X N(E)B 0, (V) =~ Zn(E )P(V,E,)

£ E 8T

True absorption coefficient:

hv
EZ z n(E,)B,,0, (V)=

3
£ E 8whv

2
C

Y n(E,—~hv)P(VE,) < B,=B,
E,
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Therefore, we have

2

C
o= s %[n(Ez —hv)—n(E,)|P(v,E,)

Let f(p)d’p= number of electrons per volume with momenta in d°p about p.

: d’ . .
Number density of quantum states = 3 g h3p (g =2 for spin 1/2 particles)
Electron density per quantum state = — f(p)

8
Therefore, we can make the replacements

X, [d'p, nE) > )
8

Then, the absorption coefficient becomes

2

c ; \
[ x, = R TV Jd pz[f(p )_f(pz)]P(VaEz) J

where P is the momentum corresponding to energy E, —hv .
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e For a thermal distribution of particles

.
£(p)= Kexp{—%

. - E,—hv E,
8- 0= o] B ] B

_ f(pz)(ehv/kT _1)

Thus, the absorption coefficient 1s
C2
& (e
1 ¢

T Az 2hy

V1) [dp, £ (p,)P(V.E,)

(ehv/kT . 1)47ij

Therefore, we obtained the Kirchhoff’s Law for thermal emission.

Jv
Y B.(T)

1%
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e For an isotropic, and extremely relativistic electron distribution:

E=pc, N(E)E= f(p)arp’dp, d’p=4np’dp

Then o, =

| N(E-hv) N(E)
(E—hv)’ E’

Assume that hv < E (in fact, a necessary condition for the application of classical
electrodynamics) and expand to first order in Av .

, O [N(E)}
oE| E’

e For a power law distribution of particles:

o, =—

1%

i - o, = (p+2)€ _[dEP( EyYE) N(E)
dE|:Nl§ ):| ( _|_2)CE—(P+1) (p+ ;N( ) . o
ocv‘z. dEF (x) < xzﬂocvy‘2 < VE

c

oc 12 Y1253 dxF(x)v—(p+1)/2x(p+l)/2

oe (P2

-2
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Note ¢, o< v~ "**"” Indicates that the synchrotron emission is optically thick at low frequencies
and optically thin at high frequencies.

The source function i1s

I _ P(v) oc 12
o Ao

v Vv

S =

1%

For optically thin synchrotron emission, [, o j
For optically thick emission, [ oS

Therefore, the synchrotron spectrum from a power-law distribution of electrons 1s

log 1, A

—(p-D)/2

Optically Opticalty
thick thin

» lOgV
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Astrophysical Example

log10(\/fv/erg/(cm2 S))

Crab nebula

Dots: modified blackbody with T'= 46 K.
Thin dashed line: emission at mm wavelengths
Thick dashed line: synchrotron emission

10 15 20

25

log((E/eV)

log 10(va/erg/(cm2 s))

log((v/Hz)
22 23 24 25 26 27 28 29

- @‘ 1: IC from sync.
95 r ) 2: IC from mm-rad. A
3: IC from FIR(dust)
-10 F 4: IC from CMB _

5: IC from mm

-10.5 emitting electrons

-11

-11.5

a2 F

125 L

log,((E/eV)

Aharonian et al. (2004)
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Bradt, Astrophysics Processes

Fig. 8.3: Photographs of the Crab nebula in polarized light with the polarizer at different orienta-
tions. The arrows show the directions or planes of the transmitted transverse electric vector. Note
the changing brightness pattern from photo to photo. The nebula has angular size 4’ X 6" and is
~6 000 LY distant from the solar system. North is up and east to the left. The pulsar is the southwest
(lower right) partner of the doublet at the center of the nebula. [Palomar Observatory/CalTech]
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