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[Bremsstrahlung]
• Bremsstrahlung (= “breaking radiation”) (or free-free emission): radiation due to the 

acceleration of a charge in the Coulomb field of another charge.	



Consider bremsstrahlung radiated from a plasma of temperature T and densities                 
electrons with charge -e and                 ions with charge Ze.	



We calculate an important ratio:	



!
!
!
!
!
!
for typical                   and                          .	



Therefore, Coulomb interaction is only a perturbation on the thermal motions of the electrons.
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A full understanding of this process requires a quantum treatment. However, a classical treatment 
is justified in some regimes, and the formulas so obtained have the correct functional dependence 
for most of the physical parameters.	



• Bremsstrahlung due to the collision of like particles (electron-electron, proton-proton) is zero in 
the dipole approximation,	



because the dipole moment is simply proportional to the center of mass (a constant of motion).	



!
!

• Approximations:	



(1) In electron-ion bremsstrahlung, we can treat the electron as moving in a fixed Coulomb field 
of the ion, since the relative accelerations are inversely proportional to the masses.	



!
!
(2) A series of small-angle scatterings	



(3) Classical calculation => Quantum correction	



(4) Non-relativistic => Relativistic
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[Emission from single-speed Electrons]
• Small-angle scattering approximation:	



The electron moves rapidly enough so that the deviation of its path from a straight line is 
negligible.	



!
!
!
!
Take Fourier transform of the second derivative of the dipole moment.	



!
!
Collision time: the electron would be in close interaction with the ion over a time interval.	



!
For              , the exponential in the integral oscillates rapidly.	



For              , the exponential is essentially unity, so we may write
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• Spectrum of the emitted radiation by a single electron:	



!
!
!
Let us now estimate      . Since the path is almost linear, the change in velocity is predominantly 
normal to the path.	



!
!
!
!
!
Thus for small angle scatterings, the emission from a single collision is
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• Total spectrum for a medium with ion density     , electron density      and for a fixed electron 
speed.	



!
!
!
!
!
!
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• Upper limit	



The integral is negligible for                          .
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• Lower limits	



by the small-angle approximation:	



by the uncertainty principle:	



!
When                                              	



        a classical description of the scattering process is valid. Then,	



When                                              	



         the uncertainty principle plays an important role. Then,	



!
• For any regime the exact results are conveniently stated in terms of correction factor or Gaunt 

factor. Precise expression of the Gaunt factor comes from QED (Quantum Electrodynamics) 
computation.	



!
!
!
Typically                              . Tables and plots are available by Bressaard and van de Hulst (1962) 
and Karzas and Latter (1961).
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[Thermal Bremsstrahlung Emission]
• We now average the above single-speed expression over a thermal distribution of electron speeds.	



!
!
At frequency    , the incident velocity must be at least such that                    , because otherwise a 
photon of energy       could not be created.	



This cutoff in the lower limit of the integration over electron velocities is called a photon 
discreteness effect.	



!
!
!
!
!
!
The exponential factor has
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In terms of                   , the volume emissivity is	



!
!
!
!
!
!
!
!
where        the velocity-averaged free-free Gaunt factor.	



Summing over all ion species gives the emissivity:
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Note that main frequency dependence is                   ,which shows a “flat spectrum” with a cut off 
at                . The spectrum can be used to determine temperature of hot plasma. 

εν
ff ∝ e−hν /kT

ν ~ kT / hP1: RPU/... P2: RPU
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Fig. 5.5: Theoretical continuum thermal bremsstrahlung spectrum. The volume emissivity (37) is
plotted from radio to x-ray frequencies on a log-log plot with the Gaunt factor (38) included. The
specific intensity I(n , T) would have the same form. Note the gradual rise toward low frequencies
due to the Gaunt factor. We assume a hydrogen plasma (Z = 1) of temperature T = 5 ×107 K with
number densities ni = ne = 106 m−3.
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Fig. 5.6: Thermal bremsstrahlung spectra (as pure exponentials) on linear-linear, semilog, and
log-log plots for two sources with the same ion and electron densities but differing temperatures,
T2 > T1. Measurement of the specific intensities at two frequencies (e.g., at C and D) permits one
to solve for the temperature T of the plasma as well as for the emission measure ⟨ ne

2 ⟩av !. [From
H. Bradt, Astronomy Methods, Cambridge, 2004, Fig. 11.3, with permission]

exp(−hn/kT) ≈ 1.0. The dashed curve in Fig. 5.5 is thus flat as it extends to low frequencies.
The effect of the Gaunt factor is shown; it modifies the exponential response noticeably but
modestly over the many decades of frequency displayed.

The curves in Fig. 5.6 qualitatively show the function jn (n , T) on linear, semilog and
log-log axes for two temperatures T2 > T1. The exponential term causes a rapid reduction
(“cutoff”) of flux at a higher frequency for T2 than for T1. At low frequencies, because
the exponential is essentially fixed at unity, the intensity is governed by the T −1/2 term if

Bradt, Astrophysics Processes
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                      at low frequencies	


Gaunt factor is given by
T > 3×105 K (hν ≪ kT )



- Gaunt Factor
• Karzas & Latter (1961, ApJS, 6, 167):	



Note that the values of Gaunt factor for                          are not important, since the spectrum cuts 
off for these values.
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• Novikov & Thorne (1973, in Black Holes, Les Houches)

U.P. = Uncertainty principle



• To obtain the formulas for non thermal bremsstrahlung, one needs to know the actual 
distributions of velocities, and the formula for emission from a single-speed electron must be 
averaged over that distribution. One also must have the appropriate Gaunt factors.	



• Integrated Bremsstrahlung emission per unit volume:	
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frequency average of the velocity averaged Gaunt factor:
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[Thermal Bremsstrahlung (free-free) Absorption]
• Absorption of radiation by free electrons moving in the field of ions:	



For thermal system, Kirchoff’s law says:	
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We have then	
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For                , 	



!
For                ,	



!
!
Bremsstrahlung self-absorption: The medium becomes always optically thick at sufficiently 
small frequency. Therefore, the free-free emission is absorbed inside plasma 
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Overall Spectral Shape
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We get
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At hν≫ kT , the exponential is negligible and α f fν ∝ ν−3. For hν≪ kT , we get
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The optical depth of a cosmic gas cloud to free-free absorption τ f fν = α f fν R,
where R is the size of the source. Since τ f fν ∝ ν−2 at small ν, the source is always
optically thick at sufficiently small frequency. It is optically thin at large frequen-
cies. Let us fill a cloud of a fixed temperature T with more and more material.
The evolution of the resulting spectrum is presented below.
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<<1
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τ

In optically thick objects, e.g. stars, the photons have a distribution close to
the Planck distribution. When computing stellar structure, one does not considerFigure from the Lecture Note of J. Poutanen



Astronomical Examples - H II regions
• The radio spectra of H II regions clearly show the flat spectrum of an optically thin thermal 

source. The bright stars in the H II regions emit copiously in the UV and thus ionize the hydrogen 
gas.	



• Continuum spectra of two H II regions, W3(A) and W3(OH):	



Note a flat thermal bremsstrahlung (radio), a low-frequency cutoff (radio, self absorption), and a 
large peak at high frequency (infrared,                      ) due to heated, but still “cold” dust grains in 
the nebula.

P1: RPU/... P2: RPU
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Fig. 5.7: Continuum spectra (energy flux density) of two H II (star-forming) regions, W3(A) and
W3(OH), in the complex of radio, infrared, and optical emission known as “W3.” The data (filled
and open circles) and early model fits (solid and dashed lines) are shown. In each case, there is a flat
thermal bremsstrahlung (radio), a low-frequency cutoff (radio), and a large peak at high frequency
(infrared, 1012−1013 Hz) due to heated, but still “cold,” dust grains in the nebula. The models fit
well except at the highest frequencies. [P. Mezger and J. E. Wink, in “H II Regions & Related
Topics,” T. Wilson and D. Downes, Eds., Springer-Verlag, p. 415 (1975); data from E. Kruegel
and P. Mezger, A & A 42, 441 (1975)].

shows the expected emission lines. Comparison with real spectra from clusters of galaxies
allows one to deduce the actual amounts of different elements and ionized species in the
plasma as well as its temperature. It is only in the present millennium that x-ray spectra taken
from satellites (e.g., Chandra and the XMM Newton satellite) have had sufficient resolution
to distinguish these narrow lines.

Integrated volume emissivity

Total power radiated

The total power radiated from unit volume is found from an integration of (37) over frequency
and may be expressed as (Prob. 53)

➡ j(T ) =
∫ ∞

0
j(n) dn = C2 ḡ(T, Z ) Z2 ne ni T 1/2,

C2 = 1.44 ×10−40 W m3 K−1/2 (W/m3) (5.39)

where T is in degrees K, and ne and ni, the number densities of electrons and ions, respectively,
are in m−3. The integration is carried out with g = 1, and a frequency-averaged Gaunt factor ḡ
is then introduced. Its value can range from 1.1 to 1.5 with 1.2 being a value that will give
results accurate to ∼20%. Note that the total power increases with temperature for fixed
densities, as might be expected.

Figure from Bradt, Astrophysics Processes	


Data from Kruegel & Mezger (1975, A&A, 42, 441)

1012 −1013 Hz

ν ~1011 Hz→ λ ≈ 3 mm



Astronomical Examples - X-ray emission
• Theoretical spectrum for a plasma of temperature       K that takes into account quantum effects. 

Comparison with real spectra from clusters of galaxies allows one to deduce the actual amounts 
of different elements and ionized species in the plasma as well as its temperature. It is only in the 
present millennium that X-ray spectra taken from satellites (e.g., Chandra and the XMM Newton 
satellite) have had sufficient resolution to distinguish these narrow lines The dashed lines show 
the effect of X-ray absorption by interstellar gas (Bradt, Astrophysics Processes).
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Fig. 5.8: Semilog plot of theoretical calculation of the volume emissivity jn , divided by electron
density squared, of a plasma at temperature 107 K with cosmic abundances of the elements as a
function of hn/kT. The abscissa is unity at the frequency where the exponential term equals e−1.
The various atomic levels are properly incorporated; strong emission lines and pronounced “edges”
are the result. The dashed lines show the effect of x-ray absorption by interstellar gas. The straight-
line portion of the plot falls by about a factor of ∼3 for each change of u by unity, as expected for
the exponential e−u. [From W. Tucker and R. Gould, ApJ 144, 244 (1966)]

White dwarf accretion

One can use the expression (39) for j(T) to deduce the equilibrium temperature of an optically
thin plasma into which energy is being injected. An example is gas that accretes onto the
polar region of a compact white dwarf star from a companion star (Section 2.7). As the matter
flows downward, it is accelerated by gravity to very high energies. Just above the surface, it
may encounter a shock, which abruptly slows the material and raises it to a high density; the
kinetic infall energy is converted into random motions (i.e., thermal energy). The material is
then a hot, optically-thin plasma that slowly settles to the surface of the white dwarf.

This plasma radiates away its thermal energy according to the expressions (36) and (39)
above. At the same time it is continuously receiving energy from the infalling matter. In
equilibrium, the energy radiated by the plasma equals that being deposited by the incoming
material. In effect, the temperature will come to the value required for the plasma to radiate
away exactly the amount of energy it receives.

One can thus use the deposited energy as an estimate of the radiated energy. That is, if
values are adopted for the accretion energy being deposited per cubic meter per second and
for the densities ne and ni, the temperature of the plasma may be determined from (39).

bremsstrahlung                                                 practical applications(2)

A cluster of galaxies:
                                       Coma (z=0.0232), size ~ 1 Mpc

                                                                           Typical values of IC hot     
                                                                           gas have radiative cooling
                                                                           time exceeding 10 Gyr

                                                                           all galaxy clusters are X-    
                                                                           ray emitters

Coma cluster (z = 0.0232), size ~ 1 Mpc

107



Astronomical Examples - Supernova Remnants
• SNR G346.6-0.2	



X-ray spectra of the SNR from three of the four telescopes on-board Suzaku (represented by 
green, red and black). The underlying continuum is thermal bremsstrahlung, while the spectral 
features are due to elements such as Mg, S, Si, Ca and Fe. The roll over in the spectrum at low 
and high energies is due to a fall in the detector response, which is forward-modeled together 
with the spectrum.

Sezer et al. (2011, MNRAS, 415, 301)



Cooling function
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6.1.1 Free-Free Absorption

This is a 3-body interaction

e

Z ei

-

A useful trick to compute the absorption coefficient when you know the emis-
sion coefficient is to use the fact that in complete thermodynamic equilibrium we
have emission=absorption at each ν:

j f fν = α f fν Bν(T ), (6.20)

where the lhs is the emission coefficient [erg/g/sec/ster/Hz], α is the absorption
coefficient [cm−1], and Bν is the Planck function [erg/cm2/sec/ster/Hz].

Planck function:

Bν(T ) = 2
(ν

c

)2 hν
ehν/kT − 1

. (6.21)

Figure from the Lecture Note of J. Poutanen



[Relativistic Bremsstrahlung]
• Normally, the ions move rather slowly in comparison to the electrons.	



In a frame of reference in which electron is initially at rest, the ion appears to move rapidly 
toward the electron. The electrostatic field of the ion appears to the electron to be a pulse of 
electromagnetic radiation. This radiation then Compton (or Thompson) scatters off the electron to 
produce. Transforming back to the rest frame of the ion (or lab frame) we obtain the 
bremsstrahlung emission of the electron.	



• In the (primed) electron rest frame, the spectrum of the pulse:	



!
!
In the low-frequency limit, the scattered radiation is	



!
!
Transverse lengths are unchanged,           , and                                  . The scattering is forward-
backward symmetric, we therefore have the averaged relation             .
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• For a plasma with a single-speeds	



!
!
!
!
!
!

• For a Maxwell distribution of electrons, a useful approximate expression for the frequency 
integrated power is given by Novikov & Thorne (1973).	



!
!
See also Itoh et al. (2000, ApJS, 128, 125), Zekovic (2013, arXiv:1310.5639v1)	



!
• At higher frequencies Klein-Nishina corrections must be used.
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[Synchrotron Radiation]
• Particles accelerated by a magnetic field will radiate.	



• Cyclotron radiation: For nonrelativistic velocities the radiation is called cyclotron radiation. The 
frequency of emission is simply the frequency of gyration in the magnetic field.	



• Synchrotron radiation: For extreme relativistic particles the frequency spectrum is much more 
complex and can extend to many times the gyration frequency. This radiation is known as 
synchrotron radiation.



~~~ 
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which may be written 

4 
3 

P = - OTC/32 &J,. 

Here u T = 8 r r i / 3  is the Thomson cross section, and U, is the magnetic 
energy density, U, = B 2 / 8 n .  

6.2 SPECTRUM OF SYNCHROTRON RADIATION: 
A QUALITATIVE DISCUSSION 

The spectrum of synchrotron radiation must be related to the detailed 
variation of the electric field as seen by an observer. Because of beaming 
effects the emitted radiation fields appear to be concentrated in a narrow 
set of directions about the particle’s velocity. Since the velocity and 
acceleration are perpendicular, the appropriate diagram is like the one in 
Fig. 4.1 Id. 

The observer will see a pulse of radiation confined to a time interval 
much smaller than the gyration period. The spectrum will thus be spread 
over a much broader region than one of order we/2r .  This is an essential 
feature of synchrotron radiation. 

We can find orders of magnitude by reference to Fig. 6.2. The observer 
will see the pulse from points 1 and 2 along the particle’s path, where these 
points are such that the cone of emission of angular width -l/y includes 

• Consider a particle of mass m and charge q moving in a uniform magnetic field, with no electric 
field.	



• Equations of motion:	



!
!
The first equation implies that                                                                 , Therefore, it follows that	



!
!
Decompose the velocity into                 , and take dot product with B.	



!
!
!
Therefore,	



!
Helical motion: The perpendicular velocity component processes around B. Therefore, the 
motion is a combination of the uniform circular motion and the uniform motion along the field.

[Total Emitted Power]
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v⊥ = constant since v = constant.



• Gyrofrequency and gyroradius:	



!
!
!
!
!
Note that the nonrelativisitic gyrofrequency                      is independent of velocity.	



• Total emitted power:	



Since                                   ,	



!
!
where     is the pitch angle, the angle between magnetic field and velocity. 	



!
!
For an isotropic distribution of velocities, it is necessary to average the formula over all angles.	



!

d 2v⊥

dt 2
= q
γ mc

dv⊥

dt
×B = q

γ mc
⎛
⎝⎜

⎞
⎠⎟

2

v⊥ ×B( )×B = q
γ mc

⎛
⎝⎜

⎞
⎠⎟

2

−v⊥ (B ⋅B)+B(B ⋅v⊥ )[ ]

= − qB
γ mc

⎛
⎝⎜

⎞
⎠⎟

2

v⊥ gyrofrequency :ω B =
qB
γ mc

, gyroradius :R = v⊥
ω B

ω B,nr =
qB
mc

P = 2q
2

3c3
γ 4 a⊥

2 + γ 2a!
2( ) = 23γ

2 q4B2

m2c5
v⊥2 =

2
3
γ 2 q4B2

m2c5
v2 sin2α

= 2
3
re
2cβ 2γ 2B2 sin2α = 2σ T c(γβ )

2UB sin
2α

a⊥ =ω Bv⊥ , and a! = 0

α

cosα ≡ v ⋅BvB , re =
e2

mc2
,σ T = 8π

3
re
2 ,UB =

B2

8π

P = 4
3
σ T c(γβ )

2UB ← sin2α = 1
4π

sin2α dΩ = 2
3∫



- Cooling Time
• The energy equation becomes:	



!
!

• cooling time: the typical timescale for the electron to loose about of its energy is approximately	



!
!

• for 

mc2 dγ
dt

= −P

tcool =
energy

cooling rate
= γ mc2

P
= 4πmc

σ T

1
γ B2 sin2α
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γ B2 sin2α

γ = 103
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where re = e2/mc2 - classical electron radius, σT = 8π
3 r

2
e =

2
310

−24 cm2 - Thomson
cross-section and UB = B2/(8π) is the magnetic energy density. One can consider
UB as the energy density of virtual magnetic field photons of energy !ωB with
number densityUB/(!ωB). The emitted power= cross-section × velocity× energy
density.

One can view the process quantum-mechanically as if the electron collides
(scatters) with virtual B-field photons and ”knocks” them free, this produces radi-
ation.

If the electron velocity distribution is isotropic then one can average over the
pitch angle (

∫

sin2 αdΩ4π =
2
3):

Pemitted =
4
3
σTcβ2γ2UB. (7.11)

This formula is valid for any velocity β.

7.3 Cooling time or radiative lifetime
Consider how the electron loose energy. The energy equation becomes:

mc2
dγ
dt
= −Pemitted = −2σTc(γ2β2)UB sin2 α. (7.12)

One can solve this ODE. (At home: assume β = 1 and solve this equation!)
The typical timescale for the electron to loose about half of its energy (i.e.

cooling time) is approximately

tcool =
Energy

cooling rate
=
γmc2

−mc2 dγdt
=
γmc2

Pemitted
=
4πmc2

σTc
1

γB2 sin2 α
=
15 years
γB2 sin2 α

,

(7.13)
thus for γ = 103 this results in the following cooling times:

Location Typical B tcool cooling length size of object
≈ ctcool

Interstellar medium 10−6 G 1010 years 1028 cm 1022 cm
Stellar atmosphere 1 G 5 days 1015 cm 1011 cm
Supermassive black hole 104 G 10−3 sec 3 107 cm 1014 cm
White dwarf 108 G 10−11 sec 3 mm 1000 km
Neutron star 1012 G 10−19 sec 3 10−9 cm 10 km

In strong B-fields, the electron loses its energy before it can cross the source.


