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Mathematical Formulae
• Gamma function

• Euler-Mascheroni constant

• Modified Bessel function of the second kind

Kn (x) ≈
− ln(x / 2)−γ if n = 0

Γ(n)
2

2
x

⎛
⎝⎜

⎞
⎠⎟
n

if n > 0

⎧

⎨
⎪

⎩
⎪

Kn (x) ≈
π
2x
e− x 1+ (4n

2 −1)
8x

⎡

⎣
⎢

⎤

⎦
⎥

 (2) x≫ n2 −1/ 4

(1) 0 < x < n +1

γ ≡ lim
n→∞

1
k
− ln(n)

k=1

n

∑⎛⎝⎜
⎞
⎠⎟
= − e− x ln xdx

0

∞

∫ = 0.577215664901532

Kn (x) ≡
Γ(n +1/ 2)(2x)n

π
cost

t 2 + x2( )n+1/2
dt

0

∞

∫

Γ(x) ≡ t x−1e− t dt
0

∞

∫ , Γ(x) = (x −1)!= (x −1)Γ(x − 2), Γ(3 / 2) = 1
2
Γ(1 / 2) = π

2

Kn−1(x)− Kn+1(x) = − 2n
x
Kn (x)

Kn−1(x)+ Kn+1(x) = −2 ′Kn (x)

Recurrence formulae

xKn
2 (x)dx = 1

2
x2 Kn

2 (x)− Kn−1(x)Kn+1(x)⎡⎣ ⎤⎦∫
= −xKn−1(x)Kn (x)+

1
2
x2 Kn

2 (x)− Kn−1
2 (x)⎡⎣ ⎤⎦

Integral formula
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[Covariance of Electromagnetic Phenomena]
• Equation of charge conservation:

The above equation can be written as a tensor equation,

if the four-current is defined by

• Note that the Jacobian (determinant) of the transformation from       to       is simply the 
determinant of     , which is unity. Therefore, the four-volume element is an invariant.

Since     is the zeroth component of the four-current, the charge element within a three-volume 
element is an invariant.

It is also an empirical fact that e is invariant.

∂ρ
∂t

+∇⋅ j = 0

∂ jµ

∂xµ = 0, jµ ,µ = 0 or ∂µ j
µ = 0

jµ =
ρc
j

⎛

⎝
⎜

⎞

⎠
⎟

xµ ′xµ
Λ

d ′x0d ′x1d ′x2d ′x3 = detΛ dx0dx1dx2dx3 = dx0dx1dx2dx3

ρ

de = ρdx1dx2dx3

jµ =
−ρc
j

⎛

⎝
⎜

⎞

⎠
⎟

∂µ≡
∂

∂xµ = ∂
c∂t

, ∂
∂x
, ∂
∂y
, ∂
∂z

⎛
⎝⎜

⎞
⎠⎟

∂µ≡ ∂
∂xµ

= − ∂
c∂t

, ∂
∂x
, ∂
∂y
, ∂
∂z

⎛
⎝⎜

⎞
⎠⎟
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• The set of vector and scalar wave equations in the Lorentz gauge is

If we define the four-potential

then the wave equations can be written as the tensor equations

• The Lorentz gauge should be preserved under Lorentz transformations.

∇2A − 1
c2

∂2A
∂t 2

= − 4π
c
j

∇2φ − 1
c2

∂2φ
∂t 2

= − 4π
c

ρc( )

Aµ = φ
A

⎛

⎝⎜
⎞

⎠⎟
, Aµ =

−φ
A

⎛

⎝⎜
⎞

⎠⎟

∂2Aµ

∂xν ∂xν
= − 4π

c
jµ , ∂ν ∂

ν Aµ = − 4π
c
jµ or A,ν

µ ,ν = − 4π
c
jµ

∇⋅A + 1
c
∂φ
∂t

= 0 → ∂Aµ

∂xµ = 0 or Aµ ,µ = 0

 
! ≡ ∂2

∂xν ∂xν
→ !Aµ = − 4π

c
jµd’Alembertian operator:
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• Electromagnetic field tensor:

The fields are expressed in terms of the potentials as

The x components of the electric and magnetic fields are explicitly

These equations imply that the electric and magnetic fields, six components in all, are the 
elements of a second-rank, antisymmetric field-strength tensor, because a rank two 
antisymmetric tensor has exactly six independent components.

E = −∇φ − 1
c
∂A
∂t

B = ∇×A

Ex = − 1
c
∂Ax

∂t
− ∂φ
∂x

= ∂0A1 − ∂1A0( )

Bx =
∂Az
∂y

−
∂Ay

∂z
= ∂2A3 − ∂3A2( )

Fµν ≡ ∂µAν − ∂ν Aµ =

0 Ex Ey Ez

−Ex 0 Bz −By

−Ey −Bz 0 Bx

−Ez By −Bx 0

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟  

F0i = Ei

Fi0 = −Ei

F12 = −F21 = B3,!
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covariant field-strength tensor

• The two Maxwell equations containing sources (inhomogeneous equations):

Fµν =ηµαηνβF
αβ

F0i =η0αηiβF
αβ = −F0i

Fi0 =ηiαη0βF
αβ = −Fi0

Fij =ηiαη jβF
αβ = Fij

∇⋅E = 4πρ

∇×B− 1
c
∂E
∂t

= 4π
c
j

∂i Ei
i=1

3

∑ = 4π
c
j0

∂2B3 − ∂3B2 − ∂0E1 =
4π
c
j1

− ∂i F
i0

i=1

3

∑ = 4π
c
j0

−∂0F
01 − ∂2F

21 − ∂3F
31 = 4π

c
j1

∂µF
µν = − 4π

c
jν or ∂ν F

µν = 4π
c
jµ ∂µFµν = − 4π

c
jν or ∂ν Fµν =

4π
c
jµ

Fµν ≡ ∂µAν − ∂ν Aµ =

0 −Ex −Ey −Ez

Ex 0 Bz −By

Ey −Bz 0 Bx

Ez By −Bx 0

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟  

F0i = −Ei

Fi0 = Ei

F12 = −F21 = B3,!
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• The conservation of charge easily follows from the above equation and the asymmetric property.

• The “internal” Maxwell equations (homogeneous equations):

The equation can be written concisely as                                           , where [ ] around indices 
denote all permutations of indices, with even permutation contributing with a positive sign and 
odd permutation with a negative sign, for example,

∇⋅B = 0

∇×E+ 1
c
∂B
∂t

= 0

∂i Bi
i=1

3

∑ = 0

∂2E3 − ∂3E2 + ∂0B1 = 0

∂1F
23 + ∂2F

31 + ∂3F
12 = 0

∂2F
30 + ∂3F

20 + ∂0F
23 = 0

∂µF
νσ + ∂ν F

σµ + ∂σ F
µν = 0 or ∂µFνσ + ∂ν Fσµ + ∂

σ Fµν = 0

F[µν ,σ ] = 0 or F[µν ,σ ] = 0

Fµν = ∂µAν − ∂ν Aµ = A[ν ,µ ]

∂ν j
ν = − c

4π
∂ν ∂µF

µν = 0

∂µ∂ν F
µν = −∂ν ∂µF

νµ = −∂µ∂ν F
µν → ∂µ∂ν F

µν = 0
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- Transformation of Electromagnetic Fields
• Since        is a second-rank tensor, its components transform in the usual way:

For a pure boost along the x-axis:

• In general,

The concept of a pure electric or pure magnetic is not Lorentz invariant.

Fµν

F′µν = ∂x′µ

∂xα
∂x′ν

∂xβ
Fαβ = Λµ

αΛ
ν
βF

αβ

Λµ
ν =

γ −βγ 0 0
−βγ γ 0 0
0 0 1 0
0 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

Ex
′ = F′01 = Λ0

0Λ
1
1F

01 + Λ0
1Λ

1
0F

10 = γ 2Ex − β
2γ 2Ex = Ex

Ey
′ = F′02 = Λ0

0Λ
2
2F

02 + Λ0
1Λ

2
2F

12 = γ Ey − βγ Bz

Ez
′ = F′03 = Λ0

0Λ
3
3F

03 + Λ0
1Λ

3
3F

13 = γ Ez + βγ By

Bx
′ = F′23 = Λ2

2Λ
3
3F

23 = Bx

By
′ = F′31 = Λ3

3 Λ1
0F

30 − Λ1
1F

31( ) = βγ Ez + γ By

Bz′ = F′
12 = Λ1

0Λ
2
2F

02 + Λ1
1Λ

2
2F

12 = −βγ Ey + γ Bz

′E|| = E||
′E⊥ = γ E⊥ + β ×B( )

′B|| = B||
′B⊥ = γ B⊥ − β ×E( )

8



• Lorenz invariants:

dot product of F with itself or “square” of F:

determinant of F:

FµνFµν = F0iF0i
i=1

3

∑ + Fi0Fi0
i=1

3

∑ + FijFij
i≠ j
∑ = 2 B2 −E2( )

det F = E ⋅B( )2
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[Relativistic Mechanics and the Lorentz Four-Force]
• We can define a four-acceleration      in exactly the same way as we obtained the four-velocity.

Note that the four-acceleration and four-velocity are orthogonal:

• We can also define the four-force       from the Lorentz force, so as to obtain a relativistic form of 
Newton’s equation.

Since                                       , the Lorentz four-force should involve (1) the electromagnetic 
field tensor and (2) the four-velocity and should also be (3) a four-vector and (4) proportional to 
the charge of the particle. Therefore, the simplest possibility is

aµ

aµ ≡ dU
µ

dτ

 

!a ⋅
!
U ≡ dU

µ

dτ
Uµ =

1
2
d
dτ

U µUµ( ) = 12
d
dτ

−c2( ) = 0

Fµ

Fµ ≡ m0a
µ = dP

µ

dτ  

!
F = d

!
P
dτ

= γ d
!
P
dt

= γ 1
c
dE
dt
, dp
dt

⎛
⎝⎜

⎞
⎠⎟

FLorentz = q E+ 1
c
v ×B( )⎡

⎣⎢
⎤
⎦⎥

Fµ
Lorentz =

q
c
FµνUν
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• Let’s check to see if it is indeed what we want.

Therefore, we obtained the desired expression for the four-Lorentz force.

• Note that the four-force is always orthogonal to the four-velocity:

It implies that every four-force must have some velocity dependence.

For the Lorentz four-force, in particular, we find

because          is antisymmetric and           is symmetric.

 

F1Lorentz =
q
c
F1νUν =

q
c
F10 (−γ c)+ F12γ v2 + F13γ v3( )

= q
c
γ E1c + B3v2 − B2v3( )

dp
dt

= q E+ 1
c
v ×B⎛

⎝⎜
⎞
⎠⎟

 
F0

Lorentz =
q
c
F0νUν =

q
c

Eiγ vi
i=1

3

∑ = q
c
γ (E ⋅v) dE

dt
= qE ⋅v : conservation of energy

The rate of change of particle energy is the mechanical work done on the particle by the field.

 
!
F ⋅
!
U = m0 (

!a ⋅
!
U ) = 0

 

!
FLorentz ⋅

!
U = q

c
FµνUµUν = 0,

Fµν UµUν
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[Fields of a Uniformly Moving Charge]
• Let’s find the fields of a charge moving with constant velocity    along the x axis. In the rest frame 

of the particle the fields are

Since                                                , we obtain

E′ = ′Ex , ′Ey , ′Ez( ) = q
′r 3 x′, y′,z′( )

B′ = 0,0,0( )

′r = ′x 2 + ′y 2 + ′z 2( )1/2where

E|| = ′E||
E⊥ = γ ′E⊥ − β ×B′( )

B|| = ′B||
B⊥ = γ ′B⊥ + β ×E′( )

inverse transformation of the previous one:
Ex =

qx′
′r 3

Ey = γ
qy′
′r 3

Ez = γ
qz′
′r 3

Bx = 0

By = −γβ qz′
′r 3

Bz = γβ
qy′
′r 3

 x′ = γ x −vt( ), y′ = y, z′ = z

 

Ex = γ
q x −vt( )

r3

Ey = γ
qy
r3

Ez = γ
qz
r3

Bx = 0

By = −γβ qz
r3

Bz = γβ
qy
r3

 r = x −vt( )2 + y2 + z2⎡⎣ ⎤⎦
1/2

where

Is this equivalent  to the fields given
by the Lienard-Wiechert potentials?

 v
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- Velocity field from the retarded potential
• For simplicity, assume         .

Let us first find where the retarded position of the particle is.  vt vtret

R

n

x, y( )

x

yz = 0

  

tret ≡ t − R / c

R2 = x −vtret( )2 + y2 = x + βR( )2 + y2

n = x + βR( )
R

x! + y
R
y! = x

R
+ β⎛

⎝⎜
⎞
⎠⎟ x
! + y

R
y!

(1− β 2 )2R2 − 2xβR − x 2 − y2 = 0

R2 − 2xγ 2βR −γ 2 x 2 + y2( ) = 0

 

E = Ex ,Ey ,Ez( ) = γ q
r3

x −vt, y,z( )

= γ q
γ 2x 2 + y2( )3/2

x , y,0( )  x ≡ x −vtwhere

R = γ 2βx ± γ 4β 2x 2 + γ 2 x 2 + y2( )⎡⎣ ⎤⎦
1/2

= γ 2βx ± γ γ 2β 2x 2 + x 2 + y2( )⎡⎣ ⎤⎦
1/2

= γ 2βx ± γ γ 2x 2 + y2( )1/2

R

 
n− β = x

R
x! + y

R
y!(1)

E = γ q
γ 2x 2 + y2( )3/2

n− β( )

(2) γ 2x 2 + y2( )1/2 = R −γ 2βx
γ

= Rγ 1
γ 2 −

βx
R

⎛
⎝⎜

⎞
⎠⎟

= Rγ 1− β 2 − βx
R

⎛
⎝⎜

⎞
⎠⎟

= Rγ 1− β x
R
+ β⎛

⎝⎜
⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

= Rγ 1− n ⋅ β( ) = Rγκ

positive solution → R = γ 2βx + γ γ 2x 2 + y2( )1/2 ∴ E = q
n− β( )
γ 2κ 3R2

= q
n− β( ) 1− β 2( )

κ 3R2
: velocity field
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- Time-dependence of the electric field at a point
• Let us choose the field point to be at             .

This involves no loss in generality. Then,

The field of a highly relativistic charge

appears to be a pulse of radiation traveling

in the same direction as the charge and confined

to the tranverse plane.

 vt

b

0,b,0( )

x

y

v

E

B

z

(0,b,0)

 

Ex = − qγ vt
(γ 2v2t 2 + b2 )3/2

= − q
b2

γ vt / b
(γ 2v2t 2 /b2 +1)3/2

Ey =
qγ b

(γ 2v2t 2 + b2 )3/2
= qγ
b2

1
(γ 2v2t 2 /b2 +1)3/2

Ez = 0

Bx = 0
By = 0
Bz = βEy

 
t =

1

2

b

γ v

Max Ex =
2

33/2
q

b2

-3 -2 -1 0 1 2 3

0

1

2

3Max Ey = γ
q

b2

 
t ≈

b

γ v

 As γ ≫1 → Ex ≪ Ey
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- Spectrum of the pulse
• Spectrum of this pulse of virtual radiation.

This integral can be done in terms of the modified Bessel function:

Thus the spectrum is

 

Ê(ω ) = 1
2π

Ey (t)e
iωt dt∫

= qγ b
2π

γ 2v2t 2 + b2( )−3/2 eiωt dt
−∞

∞

∫ = qγ b
2π

γ 2v2t 2 + b2( )−3/2 eiωt + e− iωt( )dt
0

∞

∫

= qγ b
π

γ 2v2t 2 + b2( )−3/2 cosωt dt
0

∞

∫

Kn (x) ≡
Γ(n +1/ 2)(2x)n

π
cost

t 2 + x2( )n+1/2
dt

0

∞

∫ Γ(3 / 2) = 1
2
Γ(1 / 2) = π

2
Gamma function:

 

Ê(ω ) = qγ b
π

γ 2v2

ω 2

⎛
⎝⎜

⎞
⎠⎟

−3/2
1
ω

ω 2t 2 + b
2ω 2

γ 2v2
⎛
⎝⎜

⎞
⎠⎟

−3/2

cosωt dωt
0

∞

∫

= q
πbv

bω
γ v

K1
bω
γ v

⎛
⎝⎜

⎞
⎠⎟

 

dW
dAdω

= c Ê(ω )
2
= q2

π 2b2v2
bω
γ v

⎛
⎝⎜

⎞
⎠⎟

2

K1
2 bω

γ v
⎛
⎝⎜

⎞
⎠⎟
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The spectrum starts cut off for                  . 

• Total energy per unit frequency range is obtained by

The lower limit has been chosen as some minimum distance, such that the approximation of the 
field by means of classical electrodynamics and a point charge is valid.

 ω > γ v /b

 
Δω ~ 1

Δt
~ γ v /b

Fields of a Unifonry Moving cluvge 135 

Figure 4.8 Area e&ment perpedicuku to the Oelocity of a moving pmti'e&. 

are (1) bmin = radius of ion, if field is that of an ion and (2) b---A/rnc = 
Compton wavelength of particle. The integral is now 

where 

This integral can be done in terms of Bessel functions 

dW 2q2c 
-- - __ [ x K , ( x ) K , ( x ) - f x 2 ( K : ( x ) - K ~ ( x ) > ] .  (4.74b) 
did nu2 

Two limiting forms occur when w is small, w<<yu/b,,,, and when w is 
large, w>>yu/bmln: 

__ dW = --exp( q2c - --), 2wbmin w>- YU 

dw 2 v 2  bmn 

(4.75a) 

(4.75b) 

These forms can be derived approximately by direct integration of xK:(x) ,  
using the asymptotic results K l ( x ) -  1 /x, x<< 1, and K l ( x ) - ( n / 2 x ) ' / 2 e  - x ,  

x>> 1. 

dW
dω

= 2π dW
dAdω

bdb
bmin

bmax∫

 

dW
dω

= 2q
2c

πv2
yK1

2 (y)dy
x

∞

∫

= 2q
2c

πv2
xK0 (x)K1(x)−

1
2
x2 K1

2 (x)− K0
2 (x)( )⎡

⎣⎢
⎤
⎦⎥

 
y ≡ ωb

γ v
, and x ≡ ωbmin

γ vwhere
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• Two limiting cases:

  
(1)ω ≪ γ v

bmin
(x≪1),

xK0 (x)K1(x)−
1
2
x2 K1

2 (x)− K0
2 (x)( )

≈ x − ln(x / 2)−γ( ) 1
x
− x

2

2
1
x2

− ln(x / 2)+ γ( )2⎡
⎣⎢

⎤
⎦⎥

≈ ln 2
x
e−(γ +1/2)⎡

⎣⎢
⎤
⎦⎥

= ln 0.68
x

⎛
⎝⎜

⎞
⎠⎟

  
(2)ω ≫ γ v

bmin
(x≫1),

xK0 (x)K1(x)−
1
2
x2 K1

2 (x)− K0
2 (x)( )

≈ x π
2x

e−2 x − 1
2
x2 π
2x

e−2 x 3
8x

⎛
⎝⎜

⎞
⎠⎟
2

− 1
8x

⎛
⎝⎜

⎞
⎠⎟
2⎡

⎣
⎢

⎤

⎦
⎥

= π
4
e−2 x

 

dW
dω

= 2q
2c

πv2
ln 0.68 γ v

ωbmin

⎛
⎝⎜

⎞
⎠⎟

 

dW
dω

= q2c
2v2

exp − 2ωbmin
γ v

⎛
⎝⎜

⎞
⎠⎟
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[Emission from Relativistic Particles]
• Total emitted power:

Imagine an instantaneous rest frame K’, such that the particle has zero velocity at a certain 
time. We can then calculate the radiation emitted by use of the dipole (Larmor) formula.

Suppose that the particle emits a total amount of energy         in this frame in time     . The 
momentum of this radiation is zero,             , because the emission is symmetrical in the frame.

The energy in a frame K moving with velocity        w.r.t. the particle is:

The time interval       is simply

The total power emitted in frames K and K’ are given by

Thus the total emitted power is a Lorentz invariant for any emitter that emits with front-back 
symmetry in its instantaneous rest frame.

dW ′ dt′
dp′ = 0

−v

dW = γ dW ′  dE = cdP0 = c !Λ0
µd ′P µ = c !Λ0

0d ′P 0 = γ d ′E
dt

dt = γ dt′

P = dW
dt
, P′ = dW ′

dt′

P = P′
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• the Larmor formula in covariant form:
Recall that               ,  and because                 in the instantaneous rest frame of the particle, we 
have

Therefore,

• Expression of P in terms of the three-vector acceleration

Recall

P′ = 2q
2

3c3
a′ 2

 
!a ⋅
!
U = 0  

!
U = (c,0)

 ′a0 = 0 → a′ 2 = ′ak ′a k = ′aµ ′a µ = !a ⋅ !a

 
P = 2q

2

3c3
!a ⋅ !a

  

dt = γ dt′ + v
c2
dx′!

⎛
⎝⎜

⎞
⎠⎟

u! =
′u! +v

1+v ′u! / c
2

u⊥ = ′u⊥

γ (1+v ′u! / c
2 )   

σ ≡ (1+v ′u! / c
2 )

dt = γ dt′σ

u! =
′u! +v
σ

u⊥ = ′u⊥

γσ

  

dt = γ dt′σ

du! =
d ′u!
σ

−
′u! +v
σ 2

v
c2
d ′u!

=
d ′u!
σ 2 1− v2

c2
⎛
⎝⎜

⎞
⎠⎟
=

d ′u!
γ 2σ 2

du⊥ = d ′u⊥

γσ
− ′u⊥

γσ 2
v
c2
d ′u!

= 1
γσ 2 σdu⊥ ′ −

vu⊥ ′
c2

du! ′
⎛
⎝⎜

⎞
⎠⎟
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Hence,

In an instantaneous rest frame of a particle,

Thus we can write

  

a|| =
du!
dt

= 1
γ 3σ 3

d ′u!
dt′

a⊥ = du⊥

dt
= 1
γ 2σ 3 σ d ′u⊥

dt′
− v ′u⊥

c2
d ′u!
dt′

⎛
⎝⎜

⎞
⎠⎟  

a|| =
1

γ 3σ 3 ′a||

a⊥ = 1
γ 2σ 3 σ ′a⊥ −

v ′u⊥

c2
′a||

⎛
⎝⎜

⎞
⎠⎟

  
σ ≡ 1+

v ′u!
c2

⎛
⎝⎜

⎞
⎠⎟where

Transformation of three-vector acceleration:

′u|| = ′u⊥ = 0, σ = 1

′a|| = γ
3a||

′a⊥ = γ 2a⊥

 
P = 2q

2

3c3
a′ 2 = 2q

2

3c3
′a!
2 + ′a⊥

2( )
 
P = 2q

2

3c3
γ 4 γ 2a!

2 + a⊥
2( )

 
tan ′θa ≡

′a⊥
′a!
= 1
γ
a⊥
a!

= 1
γ
tanθaNote
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• Angular Distribution of Emitted and Received Power

In the instantaneous rest frame of the particle, let us consider an amount of energy dW’ that is 
emitted into the solid angle                              (see the above figure).

Recall

I# Relarioistic Covariance and Klnemotics 

It is convenient to express P in terms of the three-vector acceleration 
d2x/dr2 rather than in terms of the four-vector acceleration d2xp/dr2 .  It 
can easily be shown (see Problem 4.3) that if K‘ is an instantaneous rest 
frame of a particle, then 

a;l= Y 3a,,, 

a; = y 2 a,. 

(4.9 1 a) 

(4.91b) 

Thus we can write 

(4.92) 

Angular Distribution of Emitted and Received Power 

In the instantaneous rest frame of the particle, let us consider an amount 
of energy dW‘ that is emitted into the solid angle dSt’=sinB‘dB‘d@’ about 
the direction at angle 8‘ to the x’ axis (see Fig. 4.9). It  is convenient to 
introduce the notations 

Since energy and momentum form a four-vector, the transformation of the 
energy of the radiation is, 

d W = y ( d  W’ + u dP:) = y ( 1 + Bp’) dW’. (4.93) 

Figurn 4.9 Lorentz tmfonnation of the angular dist&utim of emitted 
power. 

dΩ′ = sinθ′dθ′dφ′

µ ≡ cosθ → dΩ = dµdφ µ′ ≡ cosθ′→ dΩ′ = dµ′dφ′

d ′px = p cosθ′dpx = p cosθ

cosθ = cosθ′ + β
1+ β cosθ′

→ µ = µ′ + β
1+ βµ′

, or inverse µ′ = µ − β
1− βµ

dµ = dµ′
1+ βµ′

− µ′ + β
1+ βµ′( )2

βdµ′
dµ = dµ′

γ 2 1+ βµ′( )2
, dµ = γ 2 1− βµ( )2 dµ′

dΩ = dΩ′
γ 2 1+ βµ′( )2

, dΩ = γ 2 1− βµ( )2 dΩ′

dφ′ = dφ

Note:
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• Power

Recall that energy and momentum form a four-vector

In the rest frame, the power emitted in a unit time interval is

However, in the observer’s frame, there are two possible choices for the time interval to calculate 
the power.

(1)                :

This is the time interval during which the emission occurs. With this choice we obtain the 
emitted power.

(2)                                                                   :

This is the time interval of the radiation as received by a stationary observer in K. With this 
choice we obtain the received power.

dP′
dΩ′

≡ dW ′
dt′dΩ′

dt = γ dt′

dtA = γ (1− βµ)dt′, or dtA = γ
−1(1+ βµ′)−1dt′

dW
dΩ

= γ 3 1+ βµ′( )3 dW ′
dΩ′

, dW
dΩ

= γ −3 1− βµ( )−3 dW ′
dΩ′

Pµ = E
c
,p⎛

⎝⎜
⎞
⎠⎟ , and p = E

c  dW = γ dW ′ +vd ′px( ) = γ 1+ βµ′( )dW ′

∴ dW = γ 1+ βµ′( )dW ′, dW = γ −1 1− βµ( )−1 dW ′
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• Thus we obtain the two results:

     is the power actually measured by an observer. It has the expected symmetry property of 
yielding the inver transformation by interchanging primed and unprimed variables, along with a 
change of sign of  β.

     is used in the discussion of emission coefficient.

In practice, the distinction between emitted and received power is often not important, since they 
are equal in an average sense for stationary distributions of particles.

• Beaming effect:

If the radiation if isotropic in the particle’s frame, then the angular distribution in the observer’s 
frame will be highly peaked in the forward direction for highly relativistic velocities.

The factor                       is sharply peaked near           with an angular scale of order        .

dPe
dΩ

= γ 2 1+ βµ′( )3 dP′
dΩ′

= γ −4 1− βµ( )−3 dP′
dΩ′

dPr
dΩ

= γ 4 1+ βµ′( )4 dP′
dΩ′

= γ −4 1− βµ( )−4 dP′
dΩ′

Pr

Pe

γ −4 1− βµ( )−4

γ −4 1− βµ( )−4 ≈ γ −4 1− 1− 1
2γ 2

⎛
⎝⎜

⎞
⎠⎟
1− θ

2

2
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

−4

= γ −4 1
2γ 2 +

θ 2

2
⎛
⎝⎜

⎞
⎠⎟

−4

= 2γ
1+ γ 2θ 2

⎛
⎝⎜

⎞
⎠⎟

4

θ ≈ 0 1/γ
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• Dipole emission from a slowly moving particle

Using                                 and                                       , we obtain

(1) Acceleration parallel to velocity:

(2) Acceleration perpendicular to velocity:

dP′
dΩ′

= q
2 ′a 2

4πc3
sin2Θ′ Θ′ = the angle between the acceleration and

the direction of emission.

′a|| = γ
3a||, ′a⊥ = γ 2a⊥

dPr
dΩ

= γ −4 1− βµ( )−4 dP′
dΩ′

 

dPr
dΩ

= q2

4πc3
γ 2a!

2 + a⊥
2( )

1− βµ( )4
sin2Θ′ To use this formula, we must 

relate      to the angles in K.Θ′

Θ′ = θ′, a⊥ = 0

sin2Θ′ = 1− µ′2 = 1− µ − β
1− βµ

⎛
⎝⎜

⎞
⎠⎟

2

= 1− µ2

γ 2 1− βµ( )2  

dP!
dΩ

=
q2a!

2

4πc3
1− µ2

1− βµ( )6

Emission from Relativistic Partick 143 

Figure 4.10 Geometry for dipole emission from a particle instantaneously at 
&?St. 

To use this formula we must relate 0' to the angles in the frame K. This is 
difficult in the general case, so we work out the angular distribution of the 
received power for special cases: 

1-Acceleration /I to Velocity. Here 0'= 6' so that 

(4.100) 

where we have used Eq. (4.94). Substituting Eq. (4.100) into Eq. (4.99) with 
a, =0, we obtain 

(4.101) 

2-Acceleration I to Velocity. Here cos 0' = sin 6' cos +', so that 

Thus we have the result 

(4.102) 

 cosΘ′ = sinθ′cosφ′, a! = 0

sin2Θ′ = 1−
1− µ2( )cos2φ
γ 2 1− βµ( )2

dP⊥
dΩ

= q2a⊥
2

4πc3
1

1− βµ( )4
1−

1− µ2( )cos2φ
γ 2 1− βµ( )2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

x

y

z

(when a is in y-direction in the above figure)
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(3) In general

• In the extreme relativistic limit, the radiation becomes

strongly peaked in the forward direction.

“ I )  

Figutv 4. I la  Dipole mdiation pattern for patii& at mst. 

(11) 

Figwp 4.llb Angular dktribution of mdiatim emitted by a partic& with 
parollel accelerariosl and wlocity. 

( r )  
Figutv 4 .11~ Same as a 

(11) 

Figwp 4.11d Angular distribution of mdhtion emitted by a particle with 
perpendicular acceleration and wlocity. 

3-Extreme Relativistic Limit. When y>> I ,  the quantity (1  - Pp) in the 
denominators becomes small in the forward direction, and the radiation 
becomes strongly peaked in this direction. Using the same arguments as 
before, we obtain 
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x′

y′

z′

′φaφ′

′θa
θ′

a

v
Θ′

Ω′
cosΘ′ = µ′ ′µa + 1− ′µ 2( )1/2 1− ′µa

2( )1/2 cos φ′ − ′φa( )

See Eq. (219) in Chadrasekhar (1960)

particle’s rest frame: observer’s frame:

parallel acceleration:

perpendicular acceleration:
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[Invariant Phase Volumes and Specific Intensity]
• Phase volume

Consider a group of particles that occupy a slight spread in position and in momentum at a 
particular time. In a rest frame comoving with the particles, they occupy a spatial volume element 
and a momentum volume element.

In the observer’s frame,

We note that                              because the velocities are near zero in the comoving frame and the 
energy is quadratic in velocity. Therefore, we have

This contains no reference to particle mass, and therefore it has applicability to photons.

The phase space density

is an invariant, since the number of particles within the phase volume element is a countable 
quantity and itself invariant.

d 3x′ = dx′dy′dz′
d 3p′ = d ′pxd ′pyd ′pz  d ′V ≡ d 3x′d 3p′ = dx′dy′dz′d ′pxd ′pyd ′pz

phase volume in the comoving frame:

dx = γ −1dx′, dy = dy′, dz = dz′
dpx = γ d ′px + βd ′P0( ), dpy = d ′py , dpz = d ′pz

 d ′P0 = 0 +O(d ′px
2 )

dpx = γ d ′pxz  d ′V ≡ d 3x′d 3p′ = d 3x d 3p ≡ dVand : Lorentz invariant

 
f ≡ dN

dV
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• Specific Intensity and Source Function
Definition of the energy density per unit solid angle per frequency range.

Since                                                we find that

Because the source function occurs in the transfer equation as the difference             , the source 
function must have the same transformation properties as the intensity.

• Optical Depth, Absorption Coefficient and Emission Coefficient
The optical depth must be an invariant, since       gives the fraction of photons passing through the 
material, and this involves simple counting.

hν fp2dpdΩ =Uν (Ω)dΩdν

p = hν / c and Uν (Ω) = Iν / c
Iν
ν 3 = Lorentz invariant

Iν − Sµ

e−τ

τ = Lorentz invariant
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• Absorption Coefficient and Emission Coefficient
Consider the optical depth in two frames:

Then, the optical depth is

Note that             is proportional to the y component of the photon four-momentum                    .

Both                are the same in both frames, being perpendicular to the motion. Therefore, we have

Finally, we obtain the transformation of the emission coefficient from the definition of the source 
function:

rmMricurt Phase vobnes atid S ~ C $ C  Intensity 147 

Figurn 4.12 Tmfonnation of a moving, absorbing medium 

To find the transformation of absorption coefficient we imagine material 
in frame K streaming with velocity u between two planes parallel to the x 
axis. Let K‘ be the rest frame of the material. (See Fig. 4.12). The optical 
depth T along the ray must be an invariant, since e-‘ gives the fraction of 
photons passing through the material, and this involves simple counting. 
Thus we have the result 

vayy = Lorentz invariant. 
I -- 1% 7 =  - - 

sine vsine 

The transformation of sin8 can be found by noting that vsin8 is simply 
proportional to the y component of the photon four-momentum k,. But 
both k, and I are the same in both frames, being perpendicular to the 
motion. Therefore 

vg = Lorentz invariant. (4.112) 

Finally we find the transformation of the emission coefficient j ,  = aYS, 
from Eqs. (4.1 1 1) and (4.1 12): 

J Y  - = Lorentz invariant. 
Y 2  

(4.1 13) 

Another derivation of Eq. (4.1 13) can be based on Eq. (4.97a). The 
emission coefficient can be written as 

(4.1 14) 

where n is the density of emitters (particles/cm’). Now, from Eq. (4.12b) 
we have dv = dv’y( 1 + Pp’), and also n = yn’ by Lorentz contraction along 
the motion. Thus we have 

τ = lαν

sinθ
= l
ν sinθ

ναν = Lorentz invariant

ν sinθ
 

!
k = ω

c
, k⎛

⎝⎜
⎞
⎠⎟

ky and l

ναν = Lorentz invariant

jν
ν 2 = Lorentz invariant

Sν ≡ jν /αν
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