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Mathematical Formulae
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[Covariance of Electromagnetic Phenomena]

e Equation of charge conservation:

ot d

The above equation can be written as a tensor equation,

J
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» Note that the Jacobian (determinant) of the transformation from x, to x, is simply the
determinant of A , which is unity. Therefore, the four-volume element is an invariant.

if the four-current is defined by

dx;dx/dx,dx; = det A dx,dx,dx,dx, = dx,dx,dx,dx,
Since p is the zeroth component of the four-current, the charge element within a three-volume
element 1s an invariant.

de = pdx,dx,dx,

It 1s also an empirical fact that e 1s invariant.




* The set of vector and scalar wave equations in the Lorentz gauge is
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If we define the four-potential
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then the wave equations can be written as the tensor equations
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e Electromagnetic field tensor:

The fields are expressed in terms of the potentials as E=-V¢- 10A

c ot
B=VxA

The x components of the electric and magnetic fields are explicitly

1 aA a¢ 0 4l 1 40
E = —— X == A - A
* c df Ox (8 0 )
0A. O0A
B = Z Yy 82 A3 . a3A2
Y ody 0z ( )

These equations imply that the electric and magnetic fields, six components in all, are the
elements of a second-rank, antisymmetric field-strength tensor, because a rank two
antisymmetric tensor has exactly six independent components.
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covariant field-strength tensor
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e The conservation of charge easily follows from the above equation and the asymmetric property.

0,0, F" =—0,0,F" =—=9,0,F* — 9,d,F" =0

C
d,j ' =——09,0,F" =0
vJ AT vou

e The “internal” Maxwell equations (homogeneous equations):

3
V-B=0 ZaiBiZO 81F23+82F31+83F12:O
vxE+19B o . 0,F* +0,F* +9,F* =0
S or d,E,—d,E,+d,B, =0 2 3 0
[auFmeavFG“aoF“V:Oj or "F,+0d"F,+3°F, =0

The equation can be written concisely as F*'°'=0 or F, =0 ,where [ ] around indices
denote all permutations of indices, with even permutation contributing with a positive sign and

odd permutation with a negative sign, for example,

F,, = auAv - avAu = Ay




- Transformation of Electromagnetic Fields

e Since F*' 1s a second-rank tensor, its components transform in the usual way:

ox’* ox”"
ruv of _ AU 14 op
F" = " axﬁ F77=A aA ﬁF

For a pure boost along the x-axis:
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e In general,
- p
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S J

The concept of a pure electric or pure magnetic 1s not Lorentz invariant.




e Lorenz invariants:
dot product of F’ with itself or “square” of F:
F*F, =Y F'F,+Y F'F,+Y F'F,=2(B’-E’)
=1 i=1 i#]

determinant of F"
det F = (E-B)’




[Relativistic Mechanics and the Lorentz Four-Force]

 We can define a four-acceleration ¢ in exactly the same way as we obtained the four-velocity.

dU"
dt

u

a

Note that the four-acceleration and four-velocity are orthogonal:

o du* 1 d 1 d
a-U==—U,=-—(U",)=2—(=¢")=0

We can also define the four-force F* from the Lorentz force, so as to obtain a relativistic form of
Newton’s equation.

dP" ~ D D
[F“Emoa“: . j F:d_:»},d_P:fy(ld_E’d_p)

Since Fooen, = q[E i Z(V % B)} , the Lorentz four-force should involve (1) the electromagnetic
field tensor and (2) the four-velocity and should also be (3) a four-vector and (4) proportional to
the charge of the particle. Therefore, the simplest possibility is

[ FuLOrentz = QFMVUV ]
C
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e Let’s check to see if it 1s indeed what we want.

y dE :
= qFO U, = qZEZyv = —y(E V) > I =gE-v : conservation of energy

FO

Lorentz

The rate of change of particle energy 1s the mechanical work done on the particle by the field.

Fl

Lorentz ~— qFlvU z(FWIO (_yc)+F12yv2 +F13’}/'U3) dp 1
¢ p q(E+ v xBj

q C

= zy(Elc + Bv, — Bzv3)

Therefore, we obtained the desired expression for the four-Lorentz force.

e Note that the four-force is always orthogonal to the four-velocity:
F-U=m,(a-U)=0

It implies that every four-force must have some velocity dependence.

For the Lorentz four-force, in particular, we find

—_— —_

T=4ru .y, =0,
C

Lorentz

because F* 1s antisymmetric and U U, 1s symmetric.
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[Fields of a Uniformly Moving Charge]

e Let’s find the fields of a charge moving with constant velocity ¢ along the x axis. In the rest frame

of the particle the fields are

B (5= (1 .2)

B’ =(0,0,0)
inverse transformation of the previous one:

En:Eﬁ
E, :V(Ei _ﬁXB,)

Bu:Bﬁ
B, =y(B,+BXE)

Since x'=y(x—ut), Y=y, 7=z , we obtain
- N
£ =y g
r
qz
qy b, =-yW—=
Ey:»yF y r3
qy
Z B, =y
E=y°5 TP
- d J

1/2
where r’= (x’2 +y77 + z’z)

E =L B,=0
r

’ q<

B =—
> Ey:yq% ’ yﬁ”’3
qy

Z B =

EZ:’}/q,3 z }ﬁr/3

where  r= [(x —ut) +y + 7 T/z

Is this equivalent to the fields given
by the Lienard-Wiechert potentials?
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- Velocity field from the retarded potential

e For simplicity, assume z=0. Y
E=(E.E,.E)=yL(x-um.y.) o)
q r X
:y(}/z)_c2+y2)3/2 (¥.5.0) where ¥=x—u n
Let us first find where the retarded position of the particle is. p . " A
t.=t—R/c (1) n- ,B——X+y§7
2 2 2 — 2 2 R
R =(x—ut ) +y’=(X+BR) +
q
(X+BR)~ y~ (X E=y 0y 2\32 (n_ﬁ)
n= > X+Ry +ﬁ X+ y (}/x +y) o )
(2) (y2x2+y2)”2_R_7/ ﬁx:Ry( lz_ﬁxj
p—s (=PR'-23BR-%'-y"=0 Y rR
R2—2)_C’}/2ﬁR—’}/2()_62+y2)=O = Ry 1_ﬁ2_%j
A2 = 4 N2=2 2 (=2 2 172 B —
R=y ﬁXi[VﬁX +vy (x +y )] = Ry 1_’3(%4_'3)}
B 1/2
=y’ Bxxy|y’B*x’+(x°+y°
) (1/2 ):| =R7/(1—n-ﬂ)=R}/K
=y’ Bx+y(r’x +y’)
. . _ _ 12 (n-B)(1-p° .
positive solution — R=7/2,Bx+y(y2x2+ yz) E:qmz K3§€2 ) : velocity field
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- Time-dependence of the electric field at a point

e Let us choose the field point to be at (0,5,0) .

This involves no loss in generality. Then,

P qyvt _ g yut /b
X (,}/2/021_2 +b2)3/2 b2 (,}/2,021_2 /b2 +1)3/2
o qyb _q 1
Yy (,}/2v2t2+b2)3/2 b2 (,}/2/021_2 /b2+1)3/2
E =0
B. =0
B,=0 Max E
B, = ,BEy

Asy>»1 - |E|<E,

The field of a highly relativistic charge Vx E
ax E =

appears to be a pulse of radiation traveling

in the same direction as the charge and confined

to the tranverse plane.

2615

33/2 bz C

14



- Spectrum of the pulse

e Spectrum of this pulse of virtual radiation.

~ 1 ,
E)=5— j E,(t)e™ d1

_qrb

(yzvztz +b’ )_3/2 e dt = qrb
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—00

(e o]
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This integral can be done in terms of the modified Bessel function:

K (x)= T(n+1/2)2x)" =

COSt

Jr (£ +x

Thus the spectrum 1s

dwW

—:C

) )n+1/2
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-3/2
> 2) cos wt dwt
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The spectrum starts cut off for o >yv/b .

1 ab

Aw~—~yvlb
At Y

e Total energy per unit frequency range is obtained by

bmax
aw — 277;-" aw bdb
dw boin A
The lower limit has been chosen as some minimum distance, such that the approximation of the

field by means of classical electrodynamics and a point charge 1s valid.

dw  2q°c ¢~ _, Wb wb_._
= K,"(y)d where y=——, and x=
o J yK,"(y)dy - -
2q°c

- 2{xKou)Kl(x)—lxz(Kf(”‘Koz(x))}
TV 2
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e Two limiting cases:

D) o < by—” (x < 1),

min

1 2 2 2
XKy (0K, ()= —x (K’ (x)-K,) (%))

1 x°[1

zx(—ln(x/2)—7)__%[_2—(ln(x/2)+7)2} — dW:zqzcln 0.68 1"

] X X da) 77:/02 a)bmin
~1In ge—(y+1/2):|

| X

/068j
=In| —

X

2) > Z’—” (x> 1),

min

1 2 2 2
XKy (0K, ()= —x (K’ (x)-K,) (x))

2 2
zxie—zx_lxzie—zx (i) _(L)
2x 2 2x 8Xx 8Xx
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[Emission from Relativistic Particles]

e Total emitted power:

Imagine an instantaneous rest frame K’, such that the particle has zero velocity at a certain
time. We can then calculate the radiation emitted by use of the dipole (Larmor) formula.

Suppose that the particle emits a total amount of energy dW’ in this frame in time d¢’. The
momentum of this radiation is zero, dp’=0, because the emission is symmetrical in the frame.

The energy in a frame K moving with velocity —v w.r.t. the particle is:

dW =ydW’ < dE = cdP’ = cA)dP"" = cA{dP”’ = ydE’

The time interval dr is simply

dt =ydt’

The total power emitted in frames K and K’ are given by

dw dw’
= —, P, = v‘/,
dt dt
Thus the total emitted power is a Lorentz invariant for any emitter that emits with front-back
symmetry in its instantaneous rest frame.

P

P=P
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e the Larmor formula in covariant form:

Recall that 5. =0, and because U = (¢,0) in the instantaneous rest frame of the particle, we
have

2 k
a=0 — |a| =aad"=da"

=a, =a-a

Therefore,

2q° 2q° . .
P ==L > pP="1g.g
3c 3c

e Expression of P in terms of the three-vector acceleration

— ’ 2 _ ’
Recall dt:y(dt’+%dx’”) o={+wu/c) dt =ydt'c

, C dt =ydt'c " :du”_u”+v v I’

_ u,+v 0+ | o o2 o2 |
AT T /3 — y=- - / 2 f
[ o _du(l v ]_ du,
’ ’ — 2|t 2| T 22

e (1+ul,/ N u, ==+ 7 ©re

Y (Ve YO ! ’
” du, = ai, _ ulz ?;duﬁ
Yo Yo~ ¢




Hence, Transformation of three-vector acceleration:

4 p
du, 1 dy 1
a, = =33 1. a4 =—534
dt y'o’ dt v’o’
du; 1
a, = du, 21 duL vu2L |,| a, : (Gai vul j
dt y°o dt c” dt Y o
?Jl/t”
where o=|1+—
C
In an instantaneous rest frame of a particle, \ J
u=u, =0, o=1
4 )
a4 =Y"q ’
— 2y Note tanH;Ea—f:la—l:ltanea
BT . v aq 7

Thus we can write

2 26 ,
P= 3Z| |—3_Z]3(a||2+af) — P= 33)/ (ya +al)




e Angular Distribution of Emitted and Received Power

dp’, dw’
dp, dW

Note:

; dq)' = d¢
dp, =|p|cos6 dp’ =|p|cos6’

In the instantaneous rest frame of the particle, let us consider an amount of energy dW’ that 1s
emitted into the solid angle dQ’=sin6’d6’d¢’ (see the above figure).

1=cosl — dQ=dudg t=cosl —dQ =du’dy’

Recall  cosf = cosf’+ > U= a +ﬁ, or inverse ,u’:—‘u_ﬁ
1+ BcosO’ 1+ Bu’ 1- Bu
4 , N
d:u 2 2 ’
, , du = —, du=y"(1-pu) du
/JZ d:u _ ,u'l'ﬁ ﬂd,u, _— ’}/2(1+ﬁu)2
1+Bu’  (1+Bu’) .
pu (1+Bw) 40— dQ 40y (1- pu) d
y*(1+By’)

\- J




* Power
Recall that energy and momentum form a four-vector

P“=(£,p), and |p|=E — dW=y(dW’+vdp;):y(1+ﬁu’)dW’
C C

L dW =y (14 Bu)dW’, dW =y (1-Bu)" dW’

sdW’
dQ)’

dw _
dC

s dW’ dW_
A’ dQ

Y~ (1-Bu)

Y (1+pu’)

In the rest frame, the power emitted in a unit time interval 1s aP AW’

40~ draQy

However, in the observer’s frame, there are two possible choices for the time interval to calculate
the power.

(1)_dt=ydrt" :

This 1s the time interval during which the emission occurs. With this choice we obtain the
emitted power.

(2)_dt,=y(=Pwdt’ ordt, =y (1+pu) " dt’

This 1s the time interval of the radiation as received by a stationary observer in K. With this
choice we obtain the received power.
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e Thus we obtain the two results:

dP ) 3 dP’ 4 3 dP’
e = y3(1 —y*(1-

o=V ) - =y (- Bu) o

dP 4 a4 dP’ 4 4 dP’
- = y4(1 —y*(1-

o=V W) - o=y (=Bu) -

P 1s the power actually measured by an observer. It has the expected symmetry property of
yielding the inver transformation by interchanging primed and unprimed variables, along with a

change of sign of f3.
P, 1s used 1n the discussion of emission coetficient.

In practice, the distinction between emitted and received power is often not important, since they
are equal in an average sense for stationary distributions of particles.

* Beaming effect:

If the radiation 1f 1sotropic in the particle’s frame, then the angular distribution in the observer’s
frame will be highly peaked in the forward direction for highly relativistic velocities.

The factor ¥y~ (1-Bu)” is sharply peaked near 6 ~0 with an angular scale of order 1/7.

—4 —4 4
_ 1 6’ 1 6 2y
4 1_ 4z -4 1_ 1_ 1__ — -4 + —
S B (e
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e Dipole emission from a slowly moving particle

dP” _q’a” ey O’ = the angle between the acceleration and Z
dQ)’ 4rc’ the direction of emission. "4
: dP 4 dP’ :
Using ¢/ =y’a,a{ =y’a, and —==y~(1-fu) ’ —oy + Ve obtain
dP. ¢’ (7’20”2 + ai) Gin’ @ To use this formula, we must
o 3 4 , .
dQ 4rnc’ (1-fu) relate ©’ to the angles in K. .
y
(1) Acceleration parallel to velocity: @ =6, a, =0 .
2
sin2®’:1—,u’2:1—(—’u_ﬁj - L-p° - — dP”:q2a”23 1—,u26
1=Bu) ~ y*(1-pu) dQ 4mc’ (1-pu)

(2) Acceleration perpendicular to velocity: cos®”=sinf’cos¢’, a, =0 (when a s in y-direction in the above figure)

sin“ @ =1-—

(1-1*)cos’ ¢ dP, _q’a] 1 1_(1—u2)0052¢}
y* (1= pu) dQ 4zme (1-u)' | y*(1-Buy
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(3) In general
COS@i _ ‘u/‘u; 4 (1 _ ‘u/2 )1/2 (1 _ ‘U;2 )1/2 COS(¢, _¢;)

See Eq. (219) in Chadrasekhar (1960)

e [n the extreme relativistic limit, the radiation becomes

strongly peaked in the forward direction.

particle’s rest frame:

parallel acceleration: > > X'

-
-
-

observer’s frame:

;I"
perpendicular acceleration: % > X @ /13'- *
=" /v
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[Invariant Phase Volumes and Specific Intensity]

e Phase volume

Consider a group of particles that occupy a slight spread in position and in momentum at a
particular time. In a rest frame comoving with the particles, they occupy a spatial volume element
and a momentum volume element.

phase volume in the comoving frame:

d’x’ =dx’'dy’d7 307 13
. dV' = d’x'd’p’ = dx’'dy’ dz dp’dp’dp!

d’p’ = dp’dp}dp’

4

In the observer’s frame, dx=y7'dx’, dy=dy’, dz=d7
dp, =7y (dp,+BdF)), dp, =dp,, dp_ =dp!

We note that dP/=0+O(dp’?) because the velocities are near zero in the comoving frame and the
energy 1s quadratic in velocity. Therefore, we have

dp,=vdp, and (dV’ =d’x'd’p’ =d’x d’p=dV ) : Lorentz invariant

This contains no reference to particle mass, and therefore it has applicability to photons.

The phase space density N

T av

1s an invariant, since the number of particles within the phase volume element i1s a countable
quantity and itself invariant.
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e Specific Intensity and Source Function

Definition of the energy density per unit solid angle per frequency range.

hv fpldpdQ = U, (Q)dQdv

3

Since p=hv/c and U (QQ)=1,6/c we find that [ L Lorentz invariantJ
1%

Because the source function occurs in the transfer equation as the difference 7,-S, , the source
function must have the same transformation properties as the intensity.

e Optical Depth, Absorption Coefficient and Emission Coefficient

The optical depth must be an invariant, since ¢* gives the fraction of photons passing through the
material, and this involves simple counting.

( 7 = Lorentz invariant )
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* Absorption Coefficient and Emission Coefficient

Consider the optical depth in two frames:

Then, the optical depth is

loe [ L
T= = vo, = Lorentz mvariant

sin@® vsinB

o : - (o
Note that vsin@ is proportional to the y component of the photon four-momentum & = (? k).

Both k and/ are the same in both frames, being perpendicular to the motion. Therefore, we have

(vocv = Lorentz invariant)

Finally, we obtain the transformation of the emission coefficient from the definition of the source

function: S =jla, [

]—V2 = Lorentz invariant J

Vv
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