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Raman Scattering
• If the energy of the internal state        is less than that of the incoming photon         , then a 

scattered photon of energy             can be produced.

Raman scattering or the Raman effect is the inelastic scattering of a photon.

When photons are scattered from an atom or molecule, most photons are elastically scattered (i.e., 
Rayleigh scattering), such that the scattered photons have the same energy (frequency and 
wavelength) as the incident photons. However, a small fraction of the scattered photons 
(approximately 1 in 10 million) are scattered by an excitation, with the scattered photons having a 
frequency different from, and usually lower than, that of the incident photons.

• Scattering of the O VI doublet (λλ1038, 1032) by neutral hydrogen.
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Relativistic Covariance and Kinematics
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Galilean Transformation/Relativity
• Galilean transformation is used to transform between 

the coordinates of two inertial frames of reference 
which differ only by constant relative motion within 
the constructs of Newtonian physics.

Newton’s law is invariant under the Galilean 
transformation.

However, Maxwell’e equations are not invariant under 
the Galilean transformation.

• Lorentz transformation is the result of attempts by 
Lorentz and others to explain how the speed of light 
was observed to be independent of the reference 
frame, and to understand the symmetries of the 
Maxwell’s equations.
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* Review of Lorentz Transformations *
• Postulates in the special theory of relativity

(1) The laws of nature are the same in two frames of reference in uniform relative motion with no 
rotation.

(2) The speed of light is c in all such frames.

• space-time event: an event that takes place at a location in space and time.

• Derivation of Lorentz transforms:

If a pulse of light is emitted at the origin at t = 0, each observer will see an expanding sphere 
centered on his own origin. Therefore, we have the equations of the expanding sphere in each 
frame.

Since space is assumed to be homogeneous, the transformation must be linear.

We note that the origin of                  is a point that moves with speed    as seen in K. Its location 
in K is given by          . Therefore, we have

x2 + y2 + z2 − c2t 2 = 0, x′2 + y′2 + z′2 − c2t′2 = 0

x′ = a1x + a2t, y′ = y, z′ = z, t′ = b1x + b2t

 x = vt
K ′ (x′ = 0)

 

a2
a1

= −v

 

x′ = a1(x −vt)
y′ = y
z′ = z
t′ = b1x + b2t

(1)

(2)

 v
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Substitute Eqs. (2) into Eq. (1):

(Note: we didn’t assume that                                     )

Therefore, the following equations should be satisfied.

Finally, we obtain the Lorentz transformation (and its inverse):

 

a1
2 (x −vt)2 + y2 + z2 − c2 (b1x + b2t)2 = x2 + y2 + z2 − c2t 2

(a1
2 − c2b1

2 )x2 − 2(a1
2v + c2b1b2 )xt + (a12v2 − c2b22 )t 2 + y2 + z2 = x2 + y2 + z2 − c2t 2

 

a1
2 − c2b1

2 = 1
(a1

2v + c2b1b2 ) = 0
a1
2v2 − c2b22 = −c2

(a)
(b)
(c)

 

(a) b1
2 = a1

2 −1
c2

(c) b2
2 = 1+ v2

c2
a1
2

 

(b) a1
4v2 = −c4b1

2b2
2 = c2a1

2 +v2a14 − c2 −v2a12

→ a1 =
1

1− v2

c2

≡ γ

 
(a) b1 = γ , (c) b2 = − v

c2
γ

 

x′ = γ (x −vt)
y′ = y
z′ = z

t′ = γ t − v
c2
x⎛

⎝⎜
⎞
⎠⎟  

where γ ≡ 1

1− v2

c2

= 1− β 2( )−1/2 ; β ≡ v
c

Lorentz factor 1≤ γ < ∞ ; 0 ≤ β <1
 

x = γ (x′ +vt′)
y = y′
z = z′

t = γ t′ + v
c2
x′⎛

⎝⎜
⎞
⎠⎟

x′2 + y′2 + z′2 − c2t′2 = x2 + y2 + z2 − c2t 2

x′2 + y′2 + z′2 − c2t′2 = 0
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Length Contraction / Time Dilation
• Length contraction (Lorentz-Fitzgerald contraction): Suppose a rigid rod of length                     

is carried at rest in     . What is the length as measured in K? The positions of the ends of the rod 
are marked at the same time in K.

Therefore, the rod appears shorter by a factor         in K.

If both carry rods (of the same length when compared at rest) each thinks the other’s rod has 
shrunk!

It would appear to       that the two ends of the moving stick were not marked at the same time by 
the other observer (in K).

• Time dilation: Suppose a clock at rest at the origin of      measures off a time interval                   . 
What is the time interval measured in K? Note that the clock is at rest at the origin of      so 
that                    .

The time interval has increased by a factor    , so that the moving clock appears to have slowed 
down.

Time dilation is detected in the increased half-lives of unstable particles moving rapidly in an 
accelerator or in the cosmic-ray flux.

L0 = x2 ′ − x1′
K ′

L0 = x2 ′ − x1′ = γ (x2 − x1) = γ L
L = L0 /γ

1/γ

K ′

K ′ T0 = t2 ′ − t1′
K ′

x2 ′ = x1′ = 0 T = t2 − t1 = γ (t2 ′ − t1′) = γ T0
T = γ T0

γ
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Transformation of Velocities
• Simultaneity is relative: Simultaneous events at two different spatial points in the primed frame is 

not simultaneous in the unprimed frame.

• If a point has a velocity      in frame     , what is its velocity    in frame K. Writing Lorentz 
transformations for differentials

u′ K ′ u

 

dx = γ (dx′ +vdt′), dy = dy′, dz = dz′

dt = γ dt′ + v
c2
dx′⎛

⎝⎜
⎞
⎠⎟

 

ux =
dx
dt

= γ (dx′ +vdt′)
γ (dt′ +vdx′ / c2 )

= ux ′ +v
1+vux ′ / c2

uy =
dy
dt

= dy′
γ (dt′ +vdx′ / c2 )

=
uy ′

γ (1+vux ′ / c2 )

uz =
dz
dt

=
uz ′

γ (1+vux ′ / c2 )
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that his own two clocks at x 1  and x2 are synchronized. K’ will object to this, 
since according to his observations the two clocks in K are not synchro- 
nized at all. 

In both the time-dilation and length-contraction effects we can see the 
powerful role played by the questions of synchronization of clocks and of 
the whole concept of simultaneity. Many of the apparent contradictions of 
special relativity are simply a result of the relativity of simultaneity between 
two events separated in space. 

3. Transformation of Velocities 

If a point has velocity u’ in frame K‘, what is its velocity u in frame K (Fig. 
4.2)? Writing Lorentz transformations for differentials [cf. Eqs. (4.2)] 

dx=y(dx’+udt ’ ) ,  &=&’ 

dz = dz‘, 

We then have the relations 

u; + u - =-= dx y(dx’+udt’)  - 
dt y (dt ’+udx’ /c* )  1 +uu; /c2  ’ 

a; 

4 
!v = y( 1 + uu;/c’) ’ 

y( 1 + uu:/c’) . 
u, = 

(4.5a) 

(4.5b) 

(4.52) 

K 

Figure 4.2 Lorentt tramformation of wlocitks. 

  

u =
u ′ +v

1+vu ′ / c2

u⊥ = u⊥ ′
γ (1+vu ′ / c2 )

or
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• Aberration formula: the directions of the velocities in the two frames are related by

• Aberration of light
For the case of light: 

Using the identity,

The aberration formula can be written as:

  
tanθ = u⊥

u
= u⊥ ′
γ (u ′ +v)

= u′sinθ′
γ (u′cosθ′ +v) where u′ ≡ u′ .

u′ = c

 
tanθ = sinθ′

γ (cosθ′ +v / c)
= sinθ′
γ (cosθ′ + β )

 
cosθ = γ (cosθ′ +v / c)

γ 2 (cosθ′ +v / c)2 + sin2θ′
= cosθ′ + β
1+ β cosθ′

 
sinθ = sinθ′

γ 2 (cosθ′ +v / c)2 + sin2θ′
= sinθ′
γ 1+ β cosθ′( )

tanθ
2
= sinθ
1+ cosθ

tan θ
2

⎛
⎝⎜

⎞
⎠⎟ =

(1 /γ )sinθ′
1+ β cosθ′ + cosθ′ + β

= (1 /γ )sinθ′
(1+ β )(1+ cosθ′)

tan θ
2

⎛
⎝⎜

⎞
⎠⎟ =

1− β
1+ β

⎛
⎝⎜

⎞
⎠⎟

1/2

tan θ′
2

⎛
⎝⎜

⎞
⎠⎟ → θ <θ′
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• Beaming (“headlight”) effect:
If photons are emitted isotropically in    , then half will have                 and half                 .

Consider a photon emitted at right angles to     in     . Then we have

For highly relativistic speeds,            ,         becomes small:

Therefore, in frame K, photons are concentrated in the forward direction, with half of them lying 
within a cone of half-angle       . Very few photons will be emitted                .

K ′ θ′ < π / 2 θ′ > π / 2

 v K ′

sinθb =
1
γ
, cosθb = β, or tan θb

2
⎛
⎝⎜

⎞
⎠⎟ =

1− β
1+ β

⎛
⎝⎜

⎞
⎠⎟

1/2

 γ 1 θb

θb ~
1
γ
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h ’  h 

Figuw 4.3 
frrune K’. 

Relativistic beaming of mdiation emitted isotmpically in the rest 

4. Doppler Effect 

We have seen that any periodic phenomenon in the moving frame K’ will 
appear to have a longer period by a factor y when viewed by local 
observers in frame K. If, on the other hand, we measure the arrival times of 
pulses or other indications of the periodic phenomenon that propagate 
with the velocity of light, then there will be an additional effect on the 
observed period due to the delay times for light propagation. The joint 
effect is called the Doppler effect. 

In the rest frame of the observer K imagine that the moving source 
emits one period of radiation as it moves from point 1 to point 2 at 
velocity u. If the frequency of the radiation in the rest frame of the source 
is o’ then the time taken to move from point 1 to point 2 in the observer’s 
frame is given by the time-dilation effect: 

Now consider Fig. 4.4 and note I =  o h t  and d =  v At cose. The difference in 
arrival times AtA of the radiation emitted at 1 and 2 is equal to At minus 
the time taken for radiation to propagate a distance d. Thus we have 

Therefore, the observed frequency w will be 

277 w’ w= - = (4.1 1) 

This is the relativistic Doppler formula. The factor y - ’  is purely a 
relativistic effect, whereas the 1 -(u/c)cosB factor appears even classi- 
cally. One distinction between the classical and relativistic points of view 
should be mentioned, however. The classical Doppler effect (say, for sound 

K ′ K

1/γ  θ 1/γ

beam half-angle:
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11 2 Relativistic C o o a h  and Kinematics 

Observer 

Figwe 4.4 Geometty for the Doppler effect. 

waves) requires knowledge not only of the relative velocity between source 
and observer but also the velocities of source and observer relative to the 
medium (say, air) carrying the waves. The relativistic formula has no 
reference to an underlying medium for the propagation of light, and only 
the relative velocity of source and observer appears. 

We can also write the Doppler formula as 

(4.12a) 

It is easy to show that the inverse of this is 

(4.12b) 

5. Proper Time 

Although intervals of space and time are separately subject to Lorentz 
transformation and thus have differing values in differing frames of 
reference, there are some quantities that are the same in all Lorentz frames. 
An important such Lorentz invariant is the quantity dr defined by 

C’ dT2 = C’ dt2 - ( dx2 + 4’ + dz’). (4.13) 

• In the rest frame of the observer K, imagine that the moving source emits one period of radiation 
as it moves from point 1 to point 2 at velocity    .

Let frequency of the radiation in the rest frame        of the source =     . Then the time taken to 
move from point 1 to point 2 in the observer’s frame is given by the time-dilation effect:

Difference in arrival times         of the radiation emitted at 1 and 2:

Therefore, the observed frequency      will be

Note                   appears even classically. The factor          is purely a relativistic effect.

Transverse (or second-order) Doppler effect : 

Doppler Effect

 v

ω′(K ′)

Δt = Δt′γ = 2π
ω′

γ

ΔtA

ΔtA = Δt − d
c
= Δt 1− β cosθ( )

ω

ω = 2π
ΔtA

= ω′
γ (1− β cosθ )

, or ω
ω′

= 1
γ (1− β cosθ )

1− β cosθ γ −1

ω
ω′

= 1
γ
≤1 at θ = π / 2
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• Beam half-angle:

• Angle for null Doppler shift:

Relativistic Doppler effect can yield 
redshift even as a source approaches.

• Note

sinθb = γ
−1

ω
ω′

= 1
γ (1− β cosθn )

= 1

→ cosθn =
1−γ −1

β
= 1−γ −1

1+ γ −1

⎛
⎝⎜

⎞
⎠⎟

1/2

θb ≤θn

 

cosθn =
1−γ −1

1+ γ −1

⎛
⎝⎜

⎞
⎠⎟

1/2

≈1− 1
γ

for γ 1

1− θn
2

2
≈1− 1

γ

∴ θn ≈
2
γ

≈ 2θb
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Lorentz Invariant
• Lorentz invariant: A quantity (scalar) that remains unchanged by a Lorentz transform is said to 

be a “Lorentz invariant.”

• Proper distance: Since all events are subject to the same transformation, the space-time “interval” 
between two event is also invariant.

This is the spatial distance between two events occurring at the same time. This is called the 
proper distance between the two points.

• Proper time (interval):

This measures time intervals between events occurring at the same spatial location

If the coordinate differentials refer to the position of the origin of another reference frame 
traveling with velocity     ,  then

This is the time dilation formula in which        is the time interval measured by the frame in 
motion.

ds2 ≡ dx2 + dy2 + dz2 − c2dt 2

(dx = dy = dz = 0)

 v dτ = dt 1− β 2( )1/2 = dt /γ
dτ

x′2 + y′2 + z′2 − c2t′2 = γ 2 (x − βct)2 + y2 + z2 −γ 2 (ct − βx)2

= γ 2 (1− β 2 )x2 + y2 + z2 + γ 2 (β 2c2 − c2 )t 2

= x2 + y2 + z2 − c2t 2

c2dτ 2 ≡ −ds2 = c2dt 2 − (dx2 + dy2 + dz2 )

13



* Four-Vectors *
• Four-vector: Invariant in 3D rotations:

By analogy, the invariance of the space-time interval suggests to define a vector in 4D space (4 
dimensional space-time vector or four-vector). The quantities                           define coordinates 
of an event in space-time.

• Minkowski space: Space-time is not a Euclidean space; it is called Minkowski space.

Minkowski metric:

• Summation convention:

The invariant can now be written in terms of the Minkowski metric:

In any single term containing a Greek index repeated twice (between contravariant and 
covariant indices), a summation is implied over that index (originated by Einstein). This index is 
often called a dummy index.

 

x ≡ xµ =

x0

x1

x2

x3

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

ct
x
y
z

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

= ct
x

⎛
⎝⎜

⎞
⎠⎟

dx2 + dy2 + dz2

xµ (µ = 0,1,2,3)

ηµν =η
µν =

−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

ηµν =ηνµ

Note that this metric is symmetric:

s2 =
µ=0

3

∑
ν=0

3

∑ηµν x
µxν

s2 =ηµν x
µxν ηµµx

µNote that            is regarded as meaningless.

Contravariant components
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• Contravariant/Covariant components

They are related by

The metric can be used to raise or lower indices.

• Lorentz transform (corresponding to a boot along the x axis)

Any arbitrary Lorentz transformation can be written in the above form, since the spatial 3D 
rotation necessary to align the x axes before and after the boost are also of linear form.

xµ =

x0

x1

x2

x3

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

ct
x
y
z

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

xµ =

x0
x1
x2
x3

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

=

−ct
x
y
z

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

contravariant 
components:

(superscripted)

covariant 
components:
(subscripted)

xµ =ηµν x
ν , xµ =ηµν xν

s2 = xµxµ

Λµ
ν =

γ −βγ 0 0
−βγ γ 0 0
0 0 1 0
0 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

x′µ = Λµ
ν x

ν

Λµ
ν =

∂x′µ

∂xν

transformation matrix: Lorentz transformation:

x′µ =
∂x′µ

∂xν
xν ,

∂A

∂x′µ
=

∂xν

∂x′µ
∂A

∂xν

The components of a position (velocity etc.) 
vector contra-vary with a change of basis 
vectors to compensate. Transformation rules 
between the following two vector components 
are inverse. This is the basic idea of 
“contravariant” and “covariant.”
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• Conditions for the Lorentz transformation:

From the invariance of     , we must have

This can be true for arbitrary      only if

Taking determinants yields

Proper Lorentz transformations (to keep the right-handness), which rules out reflections.

Isochronous Lorentz transformations (to ensure that the sense of flow of time is the same in 
frames)

• Lorentz transformation of the covariant component

s2

ηµν x
µxν =ηστ x′

σ x′τ =ηστΛ
σ
µΛ

τ
ν x

µxν

xµ

ηµν = Λσ
µΛ

τ
νηστ or  equivalently η = ΛTηΛ in matrix form

det Λ = ±1

det Λ = 1

Λ0
0 ≥1

′xµ =ηµτ x′
τ =ηµτΛ

τ
σ x

σ =ηµτΛ
τ
ση

σν xν

 

∴ ′xµ = Λ µ
ν
xν where Λ µ

ν
≡ ηµτΛ

τ
ση

σν

Λ µ
ν
=
∂ ′xµ
∂xν
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• From the invariance of                 :

• For any arbitrary contravariant components,

• Note that

• Inverse transform

s2 = xµxµ

 ′x
σ ′xσ = Λσ

ν x
ν Λσ

µ
xµ = Λσ

ν Λσ
µ
xν xµ

 ∴Λσ
ν Λσ

µ
= δ µ

ν

δ µ
ν =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

where we have introduced
the Kronecker delta

Qµ = δ µ
νQ

ν

Identity matrix

ηµσησν = δ
µ
ν

 ∴Λσ
µ
= Λ−1( )µσ

 Λ
σ

µ
× x′σ = Λσ

ν x
ν( ) → xµ = Λσ

µ
x′σ  note: Λσ

µ
= Λ−1( )µσ
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Other Four-vectors
• Four-vector:

• Consider two four-vectors

Therefore, the scalar product of any two four-vectors is a Lorentz invariant or scalar. In particular, 
the “square” of a four vector is an invariant. Thus, our starting point, the invariance of                , 
is seen to be a general property of four-vectors.

• Note

Aµ =ηµνAν

A′µ = Λµ
νA

ν

 

Aµ =ηµνA
ν

′Aµ = Λ µ
ν
Aν

contravariant covariant

 

A →

 

A and


B

 A′
µ ′Bµ = Λµ

ν Λ µ
σ
AνBσ = δ σ

νA
νBσ = AνBν  →


A ⋅

B = AµBµ = A′

µ ′Bµ

s2 = xµxµ

 


A ⋅

A > 0 → spacelike four-vector
= 0 → light-like (or null) four-vector
< 0 → time-like four-vector

A0 → time component
Ai → space-components (ordinary three-vector)

 

A ⋅

B = −A0B0 +A ⋅B = −A0B0 + AiBi (i = 1,2,3)
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Four-velocity
The (infinitesimally small) difference between the coordinates of two events is also a four-vector. 
Dividing by the proper time yields a four-vector, the four-velocity:

Transformation of the four-velocity:

U µ ≡ dx
µ

dτ
U 0 = cdt

dτ
= cγ u

U i = dx
i

dτ
= γ uu

i

γ u ≡ 1− u2 / c2( )−1/2 , u ≡ dx
dt

 


U = γ u

c
u

⎛
⎝⎜

⎞
⎠⎟

or where

 

U ⋅

U =U µUµ = − γ uc( )2 + γ uu( )2 = −c2length of the four-velocity :

′U 0 = γ (U 0 − βU1)
′U 1 = γ (−βU 0 +U1)
′U 2 =U 2

′U 3 =U 3

γ ′u c = γ (cγ u − βγ uu
1)

γ ′u ′u 1 = γ (−βcγ u + γ uu
1)

γ ′u ′u 2 = γ uu
2

γ ′u ′u 3 = γ uu
3

 

γ ′u = γγ u (1−vu1 / c2 )
γ ′u ′u 1 = γγ u (u

1 −v)

 

′u 1 = u1 −v
1−vu1 / c2

γ ′u = γγ u 1−
vu1

c2
⎛
⎝⎜

⎞
⎠⎟

velocity component:

speed:

This is the previously derived formula.
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Momentum and Energy
• Four-momentum of a particle with a mass m0 is defined by

• In the nonrelativistic limit,

Therefore, we interpret                             as the total energy of the particle.

The quantity          is interpreted as the rest energy of the particle.

Then,

Since                 , we obtain

• Photons are massless, but we can still define

Pµ ≡ m0U
µ

 

P0 = m0cγ v

Pi = γ vm0v

  
P0c = m0c

2γ = m0c
2 1− v2

c2
⎛
⎝⎜

⎞
⎠⎟

−1/2

= m0c
2 + 1
2
m0v2 +

 E ≡ P0c = γ vm0c
2

m0c
2

 p ≡γ vm0v, Pµ = (E / c, p)

 


P2 = −m0

2c2 = − E
2

c2
+ p 2

E2 = m0
2c4 + c2 p 2

 

U 2 = −c2

 →

P2 = 0Pµ = (E / c, p), E = p c
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Wavenumber vector and frequency
• Quantum relations:

We can define four wavenumber vector:

Then, we obtain an invariant:

Therefore, the phase of the plane wave is an invariant.

• Transform for     (Doppler formula):

 

E = hν = ω
p = E / c = k

 


k ≡ 1



P = ω

c
, k⎛

⎝⎜
⎞
⎠⎟

ω = 2πν
k = 2π / λ

⎛

⎝⎜
⎞

⎠⎟

 

k ⋅ x = kµx

µ = k ⋅x −ωt

 

k ⋅

k = k 2 −ω 2 / c2 = 0

Note that it’s a null vector:

 

k

′k 0 = γ (k0 − βk1)
′k 1 = γ (−βk0 + k1)
′k 2 = k2

′k 3 = k 3

 
′ω = γ (ω − βck1) =ωγ 1− v

c
cosθ⎛

⎝⎜
⎞
⎠⎟

k1 = (ω / c)cosθ
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* Tensor Analysis *
• Definition:

zeroth-rank tensor : Lorentz invariant (scalar)

first-rank tensor : four-vector

second-rank tensor:

• Covariant components and mixed components:

• Transformation rules:

• symmetric tensor = a tensor that is invariant under a permutation of its indices.

• antisymmetric tensor : if it alternates sign when any two indices of the subset are interchanged.

′T µν = Λµ
σΛ

ν
τT

στ

′x µ = Λµ
ν x

ν

s′ = s

Tµν =ηµσηντT
στ Tµ

ν =ηµσT
σνT µ

ν =ηντT
µτ

 

′Tµν =ηµαηνβ ′T αβ

=ηµαηνβΛ
α
γ Λ

β
δT

γδ

=ηµαηνβΛ
α
γ Λ

β
δη

γσηδτTστ

= Λ µ
σ
Λν

τ
Tστ  

ν
µ′T =ηνα ′T µα

=ηναΛ
µ
σΛ

α
δT

σδ

=ηναΛ
µ
σΛ

α
δη

δτT σ
τ

= Λµ
σ Λν

τ
T σ

τ  

′Tµ
ν =ηµα ′T αν

=ηµαΛ
α
βΛ

ν
τT

βτ

=ηµαΛ
α
βΛ

ν
τη

βσTσ
τ

= Λ µ
β
Λν

τTσ
τ

T µν = T νµ

T µν = −T νµ
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• Examples of the second-rank tensors

A product of two vectors:

The Minkowski metric:

The Kronecker-delta:

AµBν

′A µ ′B ν = Λµ
σΛ

ν
τA

σBτ

ηµν

δ µ
ν
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• Higher-rank tensors

- Addition:

- Multiplication:

- Raising and Lowering Indices: The metric can be used to change contravariant indices into covariant 
ones, and vice versa, by the processes of raising and lowering.

- Contraction:

- Gradients of Tensor Fields: A tensor field is a tensor that is a function of the spacetime coordinates in 
Cartesian coordinate systems. The gradient operation                     acting on such a field produces a 
tensor field of on higher rank with μ as a new covariant index. 

- Invariance of form or Lorentz covariance or covariance: A fundamental property of a tensor 
equation is that if it is true in one Lorentz frame, then it is true in all Lorentz frames. Covariance plays a 
powerful role in helping decide what the proper equations of physics are.

Aµ + Bµ , Fµν +Gµν

AµBν , FµνGστ

AµBν → AµBµ

T µν
σ → T µν

ν

scalar

vector

 ν′T µν = Λµ
αΛ

ν
β Λν

τ
T αβ

τ = Λµ
αδ

τ
βT

αβ
τ = Λµ

αT
αβ

β

∂/ ∂xµ ≡ ∂µ

λ → ∂λ
∂xµ ≡ ∂µλ ≡ λ,µ vector (gradient) Aµ → ∂Aµ

∂xµ ≡ ∂µA
µ ≡ Aµ ,µ scalar (divergence)
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