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Raman Scattering

o If the energy of the internal state (E,) is less than that of the incoming photon (Av) , then a
scattered photon of energy hv — E, can be produced.

Raman scattering or the Raman effect 1s the inelastic scattering of a photon.

When photons are scattered from an atom or molecule, most photons are elastically scattered (i.e.,
Rayleigh scattering), such that the scattered photons have the same energy (frequency and
wavelength) as the incident photons. However, a small fraction of the scattered photons
(approximately 1 in 10 million) are scattered by an excitation, with the scattered photons having a
frequency different from, and usually lower than, that of the incident photons.

e Scattering of the O VI doublet (AAL1038, 1032) by neutral hydrogen.
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Fig.1. Raman scattered emission bands in the symbiotic star V1016
Cyg. The spectrum was obtained on the 1.93m telescope at the Ob-

servatoire de Haute Provence. SChmld (1989 ) A&A, 21 1 s L3 1)




Relativistic Covariance and Kinematics




Galilean Transformation/Relativity

e (@Galilean transformation 1s used to transform between
the coordinates of two inertial frames of reference same origin at

which differ only by constant relative motion within Y Z f=t =0
the constructs of Newtonian physics. %
—> U K

x'=x—ut

y'=y

7=z O Y

=t O
Newton’s law 1s invariant under the Galilean L

Z

transformation.

However, Maxwell’e equations are not invariant under
the Galilean transformation.

e Lorentz transformation is the result of attempts by
Lorentz and others to explain how the speed of light
was observed to be independent of the reference
frame, and to understand the symmetries of the
Maxwell’s equations.




* Review of Lorentz Transformations *

e Postulates in the special theory of relativity

(1) The laws of nature are the same 1n two frames of reference in uniform relative motion with no
rotation.

(2) The speed of light is ¢ in all such frames.

e space-time event: an event that takes place at a location in space and time.
e Derivation of Lorentz transforms:

If a pulse of light 1s emitted at the origin at = 0, each observer will see an expanding sphere
centered on his own origin. Therefore, we have the equations of the expanding sphere in each

frame.
x2+y2+Z2—C2t2=O, x'2+y'2+z'2—c 2 = () (1)

Since space is assumed to be homogeneous, the transformation must be linear.
X'=ax+at, Y=y, 7=z, t'=bx+byt

We note that the origin of K’ (x”=0) 1s a point that moves with speed v as seen in K. Its location

in K 1s given by x = ot. Therefore, we have
x'=a,(x—ut)

a, y' =y
==V 7=z (2)
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t"=bx+b,t
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Substitute Egs. (2) into Eq. (1): x”+y?+7”° -t =x>+y" +7° = c’t’

alz(x —ut) +y +77=c’ (bx+ bzt)2 =x"+y +z7 =c’t’

(azl2 — czbl2 )x° — 2(a12v + 02191192 )Xt + (a12,U2 — 021922)t2 Y+ =x"+y + 7=t
(Note: we didn’t assume that x> +y"> +z> - c’t"* =0)

Therefore, the following equations should be satisfied.

a’—c’b’ =1 (a) (@) b= a,” 2—1 (b) a*v’ =—c*b’b; =c’a’ +v’a’* -’ —v’q
(a’v+c’bb,)=0 (b)) — ¢ ) I 1 y
= =
a’v’ —c’b,> =—c’ (¢) (c) b’ =1+ U—zal2 1 ﬁ
c 2
C

— (@ b=y, (¢) by=——y

C

Finally, we obtain the Lorentz transformation (and its inverse):

g )
xX'=y(x—ur) x=y(x" +ut’)
/ / 1 5 \-172 v
y=y y=y where v = 2:(1_[3) ; ﬁEZ
’ v
Z/:Z 7=7 1__2
C
’ 2 RV < . 0<
tzy(t——zx) tzy(t +_2xj Lorentz factor 1<y <o0; 0<fB<1
C C
N J




Length Contraction / Time Dilation

’

e Length contraction (Lorentz-Fitzgerald contraction): Suppose a rigid rod of length L, =x,"—x,
1s carried at rest in K’. What 1s the length as measured in K? The positions of the ends of the rod
are marked at the same time in K.

Ly=x,"—x"=y(x,—x)=yL
L=L,/y

Therefore, the rod appears shorter by a factor 1/y in K.

If both carry rods (of the same length when compared at rest) each thinks the other’s rod has
shrunk!

It would appear to K’ that the two ends of the moving stick were not marked at the same time by
the other observer (in K).

’

o Time dilation: Suppose a clock at rest at the origin of K’ measures off a time interval 7, =1,"—1t".
What is the time interval measured in K? Note that the clock is at rest at the origin of K’ so
that x,"=x,"=0.

I'=t,—t = y(tz,_tli) =71,
I'=vyT,

The time interval has increased by a factor y, so that the moving clock appears to have slowed
down.

Time dilation 1s detected in the increased half-lives of unstable particles moving rapidly in an
accelerator or in the cosmic-ray flux.




Transformation of Velocities

e Simultaneity is relative: Simultaneous events at two different spatial points in the primed frame is
not simultaneous in the unprimed frame.

e If a point has a velocity u” in frame K’, what 1s its velocity u in frame K. Writing Lorentz
transformations for differentials

or

dx=y(dx +vdt"), dy=dy’, dz=d7

dt = y(dt'+%dx')
C

dx  y@@x'+uvdt’) = u'+v
dr y(dt’ +vdx’ | c*) - 1+, /c’
y = dy _ dy’ _ uy,
Y oodt y(dt +udx’ ¢ty y(+wu, /)
dz u,’
u =

©dt - y(l+vu '/ c?)

u”'+fu
u o
2
I 1+vu”’/c
u V4
_ 1
u,

- y(l+uu, /)

-




e Aberration formula: the directions of the velocities in the two frames are related by

ang = 1L _ u,"  u'sin@
w, Y +v) YW cosd +v)

where u’ =|u’].

e Aberration of light
For the case of light: u’=c

anf sin 6’ _ sin 6’
y(cos@ +v/c) v(cosO + )
cosH = ¥(cos@ +v/c) _ cos®’ + 3
\/7’2(0089'-!-?)/6)2+sin2 9’ 1+ [BcosO’
sin@ = sin 6’ _ sin@’

\/7’2(0089'+ vic) +sin’@ Y(1+Bcos8’)

0 in@
Using the identity, tan—= i
2 1+coso 0 (1/7)sin6’ (1/7)siné’
The aberration formula can be written as: tan(—j = 4 — 4
2) 1+Bcos@ +cos@’+B (1+B)1+cos’)

4 )

tan(gjz(%jmtan(%’) - 0<0

. J




 Beaming (““headlight”) effect:
If photons are emitted isotropically in K, then half will have 6"<z /2 and half 6">m/2.

Consider a photon emitted at right angles to v in K’. Then we have

1/2
beam half-angle: sinf, = l cosf, =3, or tan(%) = (ﬂj
Y 2 1+
For highly relativistic speeds, y>1, 6, becomes small:

0~—
Ty

Therefore, in frame K, photons are concentrated in the forward direction, with half of them lying
within a cone of half-angle 1/y. Very few photons will be emitted 6>1/y .

Call—
K’ K
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Doppler Effect

e In the rest frame of the observer K, imagine that the moving source emits one period of radiation
as 1t moves from point 1 to point 2 at velocity v .

Let frequency of the radiation in the rest frame (K”) of the source = @’. Then the time taken to
move from point 1 to point 2 in the observer’s frame is given by the time-dilation effect:

Observer

N

2
At=At"y = —7}/
®
Difference in arrival times Ar, of the radiation emitted at 1 and 2:

At, :At—£=At(1—ﬁCOSQ)
c

Therefore, the observed frequency @ will be

2 @’ or o 1
At, y(1—Bcos)’ o’ y(1-BcosB) b 2

Note 1-[Bcos@ appears even classically. The factor y~' is purely a relativistic effect.

Transverse (or second-order) Doppler effect :

)

’

1
® Y

<1 at O=m/2
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e Beam half-angle: sinf, =y~

e Angle for null Doppler shift:

W 1 _q
@ y(—-[Bcosb)

1—}/_1 1—}/_1 112
B :(HW]

Relativistic Doppler effect can yield

—  cosO, =

redshift even as a source approaches.

o 1/2
cos@n:[1 }’1) zl—l for y >1
I+y 14
2
1—9” ::1—l
2 Y
2
0 = |—=.206,
Y
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Lorentz Invariant

 Lorentz invariant: A quantity (scalar) that remains unchanged by a Lorentz transform is said to
be a “Lorentz invariant.”

x/2 4+ ylZ 4+ ZIZ . CZtlz — ,}/Z(x_ ﬁcl,)Z 4+ y2 4+ Z2 i ,}/Z(Ct . ﬁx)Z
_ yz(l_ﬁz)xz +y2 + 2 +7/2(ﬁ202 _Cz)tz
R +y2 + 72— o
* Proper distance: Since all events are subject to the same transformation, the space-time “interval”
between two event 1s also invariant.
ds’ =dx’ +dy* +dz7” —c’dt’

This 1s the spatial distance between two events occurring at the same time. This 1s called the
proper distance between the two points.

e Proper time (interval):
c’dt’ =—ds” =c’dt’ — (dx”> +dy”* +d7*)
This measures time intervals between events occurring at the same spatial location (dx = dy = dz =0)

If the coordinate differentials refer to the position of the origin of another reference frame
traveling with velocity v, then dr= dt(l - B )1/2 =dt/y

This is the time dilation formula in which dz 1s the time interval measured by the frame in
motion.
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* Four-Vectors *

o Four-vector: Invariant in 3D rotations: dx>+dy” +dz’

By analogy, the invariance of the space-time interval suggests to define a vector in 4D space (4
dimensional space-time vector or four-vector). The quantities x* (u=0,1,2,3) define coordinates

of an event in space-time.

=

g

\

MR % =

0

1

2

3

\

J

Contravariant components

 Minkowski space: Space-time 1s not a Euclidean space; it 1s called Minkowski space.

Minkowski metric:

Ny =N =

e Summation convention:

/

\

-1

o O O

S O = O

oS = O O

—_— O O O

\

J

Note that this metric 1s symmetric:
n/,tv = nv‘u

3 3
. . . . . . . 2 _ Hov
The invariant can now be written in terms of the Minkowski metric: ° Zz N X" X

u=0v=0

In any single term containing a Greek index repeated twice (between contravariant and
covariant indices), a summation is implied over that index (originated by Einstein). This index 1s
often called a dummy index.

2 u.v
ST=MN,X0X

Note that 7,,x" is regarded as meaningless.
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e Contravariant/Covariant components

contravariant X ct covariant
components: u x' X components:
. x ju— — .
(superscripted) x2 y (subscripted)
NS
They are related by

_ v TR
X, =Ny,Xx, X =N"x,

2 _ M
S—Xxu

The metric can be used to raise or lower indices.

* Lorentz transform (corresponding to a boot along the x axis)

transformation matrix: ( y =By 0 O )
Av | By v 00
0 O 1 O

.0 0 0 1,

( )
X, ( . )
X4 X
x — —
g X, y
\ X3 ) \ < )

/The components of a position (velocity etc.)
vector contra-vary with a change of basis
vectors to compensate. Transformation rules

are inverse. This is the basic idea of
“contravariant” and “covariant.”

L X" 9A ox' 2A

= X

v ’ ru ru v
N ox 0x dx’" dx

between the following two vector components

J

Lorentz transformation:

N
N TR,
xT=A"x

dx’"
T
Av_axv
\_ J

Any arbitrary Lorentz transformation can be written in the above form, since the spatial 3D
rotation necessary to align the x axes before and after the boost are also of linear form.
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e Conditions for the Lorentz transformation:
From the invariance of s°, we must have
nuvx“xv =1 x°x"=n_A° uAfvx“xv
This can be true for arbitrary x* only if
Nw =A°, A" 1, or equivalently 1n=A'mA in matrix form
Taking determinants yields
det A==1
Proper Lorentz transformations (to keep the right-handness), which rules out reflections.

det A=1

Isochronous Lorentz transformations (to ensure that the sense of flow of time 1s the same 1n
frames)
A’ >1

0

e Lorentz transformation of the covariant component

4 )
r T T 0 __ T ov Y — T oV
X, =M, xX " =1,A,x°=1n,A n"x, Sox,=Agx, where Ay =1,A N
TV ax;
y =—=
ox,




e From the invariance of s> = xtx,
/6. v _ r0 VA H —po A H.ov
X7xg =N X" As x, = A" A XX,

~

. AO H_ su
AT R =5

AN = ( A~ )#G the Kronecker delta

e For any arbitrary contravariant components,

0" =5",0"

e Note that
n“n,, =o",

e JInverse transform

Ao ><(x"y =A0vxv) - x'=As x°

where we have introduced

5", =

Vv

SO O =
S O = O
S = O O

u

note: Ag = (A‘l)

o

—_O O O

Identity matrix
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Other Four-vectors

e Four-vector: contravariant covariant
A - A'=n"A, A,=1n,A"
A =AM A PR
v A/J = A‘u AV

e Consider two four-vectors A and B

A,MB; = AMVKHGAVBG = 5GVAVBO_ = AVBV — ( AE = A'uBu = A,'UB;L )

Therefore, the scalar product of any two four-vectors i1s a Lorentz invariant or scalar. In particular,
the “square” of a four vector is an invariant. Thus, our starting point, the invariance of s* = x"x,,
1s seen to be a general property of four-vectors.

* Note
A-A>0 — spacelike four-vector

=0 — light-like (or null) four-vector

<0 — time-like four-vector

A’ — time component

A" — space-components (ordinary three-vector)

A-B=—A°B°+A-B=-A"B"+A'B, (i=1,2,3)
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Four-velocity

The (infinitesimally small) difference between the coordinates of two events 1s also a four-vector.

Dividing by the proper time yields a four-vector, the four-velocity:

K dt
U’“‘de > UO=C—=C}/u (# h N1 dx
dt d"_’ or | U=y, ¢ where }/ME(l—u /C) : MEZ
Ui _ d_xl _ ui u
aw S g
. - = 2 2
length of the four-velocity : [U-U =U"U,=—(y,c) +(r,u) = _Czj
Transformation of the four-velocity:
U,O ZY(UO_ﬁUl) YM'C:,}/(C’}/M_[),’}/MMI) ’}/u, ZWM(I—’I}Ml/Cz)
, LA 1 —
U I _ r}/(_ﬁUO 4+ Ul) ’}/u,l/l = }/( ﬂC’yu +'}/ul/l ) ,yu,ull _ Wu (ul . U)
U? =0 Yo =y
U’ =U° Yo" =y
I/tl — v
velocity component: u’' = o 2 This 1s the previously derived formula.
—vu /C
—

1
speed: v, =7, (1—%)
C
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Momentum and Energy

 Four-momentum of a particle with a mass my is defined by

P* =m,U" P’ = m,cy,
Pi — yvaV
e [n the nonrelativistic limit,
) -1/2
0 2 ) U ’ 1 5
PC:mOC ’}/:moc (1——2) :mOC +EmOU + ...
C

Therefore, we interpret E=P’c=vy m,c’ as the total energy of the particle.

The quantity m,c” is interpreted as the rest energy of the particle.

Then,
p=y m,v, P"'=(E/c,p)

. . ) ~ E* 2
Since U2 =-¢*,weobtain P’ =-mc’ =——+|p|
C

E* = mgc4 +c2|p|2

e Photons are massless, but we can still define

P*=(E/c,p), E=|plc — P*=0




Wavenumber vector and frequency

e (Quantum relations:

E=hv=1w =271V
p=E/c=hk k=27/A

We can define four wavenumber vector: Note that it’s a null vector:

ﬁz(ﬂ,kj k-k=|k —w?/c*=0

St | —

k
C
Then, we obtain an invariant:

k-X= kx" =Kk -x—wt
Therefore, the phase of the plane wave 1s an invariant.

e Transform for k (Doppler formula):

K =yk’-Bk" —> w’=}/(w—ﬁck1)=wy(1—%cos9j
k' =y (=Bk° + k") T

K =k’ k' =(w/c)cosO

k/3 — k3
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* Tensor Analysis *

Definition:
zeroth-rank tensor : Lorentz invariant (scalar) s =y
first-rank tensor : four-vector X' =A" x"
second-rank tensor: T = A* A T
Covariant components and mixed components:

T,=nen.T" T'=n,T" T,/=n,T"

Transformation rules:

Tr = Mol T ™" T, =G T Ty =1,,T""
= Tl A" AT =N, A AT =1, A A T
= M A" A5 T =M N AT, =1, A A NPT
=Au AV T, = A AT, RSN

symmetric tensor = a tensor that 1s invariant under a permutation of its indices.
THV — TVH
antisymmetric tensor : if it alternates sign when any two indices of the subset are interchanged.

T#V — _TV#
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* Examples of the second-rank tensors

A product of two vectors: A“BY
AMBY = A" A" _A°B°

The Minkowski metric: n*"

The Kronecker-delta: §*
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Higher-rank tensors

Addition: A"+ B", F"+G"
Multiplication: A“B", F"'G_.

Raising and Lowering Indices: The metric can be used to change contravariant indices into covariant
ones, and vice versa, by the processes of raising and lowering.

Contraction: A“B, — A“Bu scalar

T~ —> T"  vector

o

T, = A A AT = A 87T = A T,

Gradients of Tensor Fields: A tensor field is a tensor that 1s a function of the spacetime coordinates in
Cartesian coordinate systems. The gradient operation d/dx" =4 , acting on such a field produces a
tensor field of on higher rank with p as a new covariant index.

oA .
A - e d, A=A, vector (gradient) A" — ?91:“ =d,A"=A", scalar (divergence)

Invariance of form or Lorentz covariance or covariance: A fundamental property of a tensor
equation 1s that if it is true in one Lorentz frame, then it is true in all Lorentz frames. Covariance plays a
powerful role in helping decide what the proper equations of physics are.
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