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Thomson Scattering (Electron Scattering)

Recall the dipole formula AP dW q2 242

. 2
a0~ dtdQ)  dred o 303

Let us consider the process in which a free charged particle (electron) radiates in response to
an incident electromagnetic wave.

In non-relativistic case, we may neglect magnetic force.

magnetic/electric force ratio in Lorentz force: Fg/Fgr ~ (v/c)B/E =v/c <K 1

Consider a monochromatic wave with frequency w, and linearly polarized in direction € :
E = €Eysinwyt

Thus the force on a particle with the charge e 1s
F = eE = eeFEjsin wgt

|
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 We obtain the time-averaged power per solid angle ((sin® wot) = 1/2) .

dP <d?> e*F2 ., et F2
_ p— 1 @ p— 1 @ _P —
< dQ > incd STm2c3 P 3m?2c?

Note that the time—averaged incident flux 1s
(S) = —E3
8 Io

The differential cross section, -0 for linearly polarized radiation 1s obtained by

do  /dP do et 5 . 9 e’
dQ:<dQ>/<S>’[°de2(z48m © = r{sin” O, O —

where the quantity 7o gives a measure of the “size” of the point charge. (Note electrostatic
potential energy e¢ = e”/ro).

For an electron, the classical electron radius has a value 7o = 2.82 x 10~"% cm,
The total cross section is found by integrating over solid angle.

8T o

1
o= / C7 40 = 2777“(2)/ (1 — p*)dp = 570
~1

For an electron, the scattering process 1s then called Thomson scattering or electron scattering,

and the Thomson cross section is Q7
o = ?fr% = 6.652 x 1072° cm?
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* Note:
The total and differential cross sections are frequency independent.

The scattered radiation 1s linearly polarized in the plane of the incident polarization vector € and
the direction of scattering n.

o o< 1/m? : electron scattering is larger than ions by a factor of (m,/m.)? = (1836)2 ~ 3.4 x 108

We have implicitly assumed that electron recoil 1s negligible. This is only valid for nonrelativistic
energies. For higher energies, the (quantum-mechanical) Klein-Nishina cross section has to be
used.

* What is the cross section for scattering of unpolarized radiation?

An unpolarized beam can be regarded as the independent superposition of two linear-polarized
beams with perpendicular axes.

Let us assume that n = direction of scattered radiation
k = direction of incident radiation

Choose

the first electric field along €1, which is in the n — k plane

. > k
the second one along €, orthogonal to this plane and to n
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e Let © =angle between €1 and n, and note that angle between €2 andn = 7/2.
0 = 7/2 — © = angle between the scattered wave and incident wave
Then, the differential cross section for unpolarized radiation

is the average of the cross sections for scattering of two electric fields.

do\  _1[(do\ | (do
AQ ) ol ds) ) ..

€r X 1N

DN |

1 (da 77/2 > N (da(@))
2 A2 /) o
1 2

= 570 (1 + sin @)

= %r% (1+ cos” 0)

This depends only on the angle between the incident and scattered directions, as it should for
unpolarized radiation.

. d !
Total cross section:  ounpol = / (d%) dQ) = 7rs / (1 + p?)du
unpol —1

87T
— —ro

3

— Opol
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Properties of Thomson Scattering

e Forward-backward symmetry: differential cross section is symmetric under 6 — —0.

e Total cross section of unpolarized incident radiation = total cross section for polarized incident
radiation. This 1s because the electron at rest has no preferred direction defined.

e Scattering creates polarization

The scattered intensity is proportional to 1 + cos® 6, of which 1 arises from the incident electric
field along €2 and cos? 6 from the incident electric field along €.

“cos® §” of the polarization along e> will be cancelled out by cos” 0
the independent polarization along e, x n. ',/;2 «n)
Therefore, the degree of polarization of the scattered wave: —t—t > 1
1 — cos? 0
H — e N.-"
1 + cos? 6 )

Electron scattering of a completely unpolarized incident wave produces a scattered wave
with some degree of polarization.

No net polarization along the incident direction (6 = 0), since, by symmetry, all directions are
equivalent.

100% polarization perpendicular to the incident direction (¢ = 7/2) , since the electron’s motion
1s confined to a plane normal to the incident direction.
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Astrophysical Applications of Polarization by Scattering

e Detection of a concentric pattern of polarization vectors in an extended region indicates that the
light comes via scattering from a central point source.

Werner et al. (1983, ApJL, 265, L13)

T T L T | [rrrr|rr

LN AL LN BN LR B BN B
- ORION—-BN/KL REGION (&

3.8 um POLARIZATION P =50%

so0” IRc9 . 50"

_F ORION-BN/KL REGION

3.8 um INTENSITY

—05°24' 00" — —05°24' 00"

-
e
-
e

N
Q

DECLINATION (1950)
N
<

DECLINATION (1950)

30" _| 30"

40"

_lllll]lllllllllllllllllllllll#lllll] | _lllllllllllllll|lllllllll'lllllllllll:
5h32m 4850 4755  47.50 4655 4650 4555 45.50 5h32m 4850 4755 4750 4655 4650 4555 45.50
RA (1950) RA (1950)

e Left map shows the IR intensity map at 3.8 um of the Becklin-Neugebauer/Kleinmann-Low
region of Orion. It is not easy to 1dentify which bright spots correspond to locations of possible
protostars.

 However, the polarization map singles out only two positions of intrinsic luminosity: IRc2 (now
known to be an intense protostellar wind) and BN (suspected to be a relatively high-mass star)

e All the other bright spots (IRc3 through 7) correspond to IR reflection nebulae.
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Radiation from Harmonically Bound Particles

e Thomson Model of an Atom: Electrons have equilibrium positions in an atom like raisins in a
raisin pudding. When perturbed slightly away from this state, they will vibrate about their
equilibrium positions like a harmonic oscillator, with a characteristic frequency.

e Undriven Harmonically Bound Particles (free oscillator)

The electron oscillation in a Thomson atom can be viewed as a classical oscillating dipole. Since
an oscillating electron represents a continuously accelerating charge, the electron will radiate
energy. Then, the radiative loss rate of energy, averaged over one cycle of the oscillating dipole

will be
daw 2e? (|x]?)

dt 3c3
where 1 [7/2
(%|*) = —/ X - Xdt
T —7/2
1 . 1 (72
= “x-x|7? - = X - xdt
T 7/2 T —7/2

The period 7 and frequency wy of the oscillator is related by 7 = 27 /wy .

Here, we note that x and x are 90° out of phase. Then,

(%*) = —= X -xdt =—(X-x) — -
T J /2 dt 3c

1 /T/Q AW 2 (X - %)
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e Abraham-Lorentz formula: We can i1dentify the radiation reaction force (the damping of a
charge’s motion which arises because of the emission of radiation) by noting that

d 2€” ...

a = (Fiaqa - xX) — Frig= 2 % . Abraham-Lorentz formula
dt 3c3

This formula depends on the derivative of acceleration. This increases the degree of the equation
of motion of a particle and can lead to some nonphysical behavior if not used properly and

consistently.

For a simple harmonic oscillator with a frequency wo, we can avoid the difficulty by using

X = —wgx

This is a good assumption as long as the energy is to be radiated on a time scale that is long
compared to the period of oscillation. In this regime, radiation reaction may be considered as a
perturbation on the particle’s motion. We then rewrite the radiation reaction force as

2,,2 2,,2
2e“wg . 2e“w}

53 X —myx, 7= damping constant

Note v = A9

Fraqg = —
e 3mce3

(a) condition for the approximation:
v/wo = (2e*/3mc?) (wo/c) = (2/3)(re/XNo)2m < 1 for A\g > r. =2.82 x 107" cm

In this limit, radiation damping has a well-defined notion.
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(b) condition for the approximation:

T = the time 1nterval over which the kinetic energy of the particle is changed substantially by the

emission of radiation: 9 3 9
T mu 3mece ( v )

Taw/dt T 2e2 \a

a

: : : : v
tp = the typical orbital time scale for the particle: ¢, ~ - or t,=—
a

Then, the condition becomes

T 3me3 t
—>1 — = — > 1
D 2€ Te

2 e? 2r
where 7, = =5 = 2le (L1072
T =33 T 3¢ ( 3)

is the time for radiation to cross a distance comparable to the classical electron radius.

In terms of frequency of the oscillator, this condition 1s equivalent to:

2T C
— =3T— = w, > wo
TC re

In terms of wavelength of the oscillator,

2 ome 2
M= a =T 2 2 (~ 2% 1078 em = 2 x 107°A)
Wo We 3

Therefore, in most cases, the approximation is valid.

13E 92 302 €Y



e Equation of motion of the electron in a Thomson atom, including the radiation damping force, 1s

X+ X + wix =0

This equation may be solved by assuming that x(t) o e** .

o Hyat+ws =0 — a=—(y/2) =% \/(7/2)2 — w
= —v/2 % iwot + O(y? /wf)
Assuming initial conditions

x(0) =xg, 2(0)=0att=0
we have

1 : .
2(t) = Swo [em (/270 4 (/20|

* Power spectrum:

1 [ . o 1 1
T(w) = — t)etdt =
7(w) 277/0 z(t)e A [v/Q—i(w%—wO) i v/2 —i(w — wp)
This becomes large in the vicinity of w =wg and w = —wy.

We are ultimately interested only in positive frequencies, and only in regions in which the values
become large. Therefore, we obtain

Wiy 1 _ 2 @ 2 1
N 2w —wgy 1TW) _(47T> (W —wo)? + (7/2)2

T(w)
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Recall dW S’
dw 33

e”|z(w)|”

Energy radiated per unit frequency:

dW  8rw* ez 1 1 wt\ v/2m
= =——m|—=|x
do 3¢ (4m)* (w—wo)?+ (v/2)? 27 \wi/) " (w—wo)?+ (7/2)?
L /27
T2 S w0+ (/22
For a harmonic oscillator, note that the equation of motion is F = —kx = —mw§x , spring
constantis k = mw; , and the potential energy (energy stored in spring) is (1/2)kz2.
From 00
/27 1 —1
dw = =t 2(w — > =1
[ a5 e e
Total emitted energy = initial potential energy of the oscillator:
W = / —dw = —kw(z)

P(w) = (@ —w0)? + (7/2) Lorentz (natural) profile
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Damping constant is the full width at half maximum (FWHM).

A= 2T
W
A 27,
A\ = 27TC—w = 27TC—T—
B 3 c
4
= —TT,
3

= 1.2 x 107 %A

13E 92 302 €Y

13



 Driven Harmonically Bound Particles (forced oscillators)

Electron’s equation of motion Rybicki & Lightman use the following equation.

. : 9 eEo . . O\ s 5 eBo ;.
X+ 7YX+ wgX = ——¢€ — X - ——
Y 0 - X — (v/wg)X + wyx e
Steady-state solution of this equation:
: . : eFEn
x = xge™t = \Xo\ez(wH‘s) —  (—w? Fiwy + wg)xoe“"t — 0wt
m

(e/m)Eo
(w? — wg) — iwy

X0 —

2

Xp = |X0‘€i5 x (W —wd) +iwy — 6 =tan " ( 2607 )

The response is slightly out of phase with respect to the imposed field.

For w > wo, the particle “leads” the driving force and for w < wq 1t “lags.”

Time-averaged total power radiated:
p_ dw'\ _ 2e? (|x]?) _ e?w?|xq|?
dt 3¢c3 3c3
et E? w

T 3m2c3 (w? — wd)? + (w7)?
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e Scattering cross section:

e Some Limiting Cases of Interest

(a) w > wq (Thomson scattering by free electron)

8T o
Osca — 0T — ——T

3 €
At high incident energies, the binding becomes negligible.

(b) w < wqy (Rayleigh scattering by bound electron)

[ 0 (;jo)j

The electric filed appears nearly static and produces a nearly static force.

Blue color of the sky at sunrise:

Red color of the sun at sunset: when the path through the atmosphere is longer, the blue and green
components are removed almost completely leaving the longer wavelength orange and red
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(¢) w =~ wqo (Resonance scattering of line radiation)
4

Osca(W) & 0 0
" (w = w0)2(2w0)? + (w07)?
wg/él Note Tgeat(w) = o, (V)
= 0T
(@ —w0)? + (1/2) . B \
() 2mee v /2w
Osca. —
wi 8w [ €2 1 3 mc? , €2 mc (w — w0)2 + (’)//2)2
or =3\ = X1 X\ 7522 =27 %(7/27{') —_ , ,
0 oo (V) = e v/ 4
L oo me (v — vg)? + (7/4m)? )

In the neighborhood of the resonance, the shape of the scattering cross section is the same as the
emission from the free oscillator.

Total scattering cross section: [ 2262 o0 T2
/ o(w)dw = : / o(v)dy =
0 0

mc mc

In evaluating this integral, we have apparently neglected a divergence, since the cross section
approaches o for large w.

However, note that the approximate formula for radiation reaction is only valid for wp < we .
Therefore, we must cut off the integral at a w,,,, such that wp K wmax K we .
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We also note that the contribution to the integral from the constant Thomson limit 1s less than

Hmax 8t [ €2\’ me> 8m2e? >
ordw = OTWmax K OTW, = X3r| — | = ~ Tgea(w)dw
0 0

e2

3 \ mc? mec

The contribution is therefore negligible. o/or
A ]
Classical radiation
reaction invalid

In the quantum theory of spectral lines,

we obtain similar formulas, which are

00 7'('62
conveniently stated in terms of the classical results as / o(v)dv = — fan’
0

where f,,’ 1s called the oscillator strength or f-value for the transition between states n and n’.
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Resonance Lines

Draine, Physics of the interstellar and intergalactic medium

Table 9.4 Selected Resonance Lines® with A < 3000 A Table 9.4 contd.
Configurations 1 u Eo/hc(em™b)  Avac(A)  fou Configurations ¢ u E¢/hc (cm™) Avac(A)  fou
CIv 1522s — 1s%2p ?S1 /2 2P1°/2 0 1550.772  0.0962 Mgl 2p%3s2 —2p%3s3p  1Sg lpo 0 2852.964 1.80
281/2 2P?<)3/2 0 1548202  0.190 Alll 2p2332 —2p23s3p iSo 1P10 0 1670.787 1.83
1 o
NV 16295 — 1429 2g 2p< 0 1242804 0.0780 Silll 2pS3s2 —2p®3s3p 1S P¢ 0 120651  1.67
SR Y PIV 2p63s2 — 2p03s3p 1S, 1PO 0 950.655 1.60
Si/2  2P2, 0 1242.821  0.156 : > > 5 5
OVI 296 _ 1429 2 213?5/ 0 037613 0.066 SIl  3s°3p—3s%4s PP, Sy 0 1526.72  0.133
v Tz e ‘ | 2pS . 28y, 28724 153345 0.133
S0 2PS, 0 1037.921  0.133 5 S
/ PII  3s23p — 3s3p PP, ?Dg 0 1334.808 0.029
1 2522p — 252p? 2po D2 1334.532  0.127
¢ SepT e REVERNNSCTE 0 4320 Sil 3s23p% —3s23pds 3Py 9P 0 251508 0.17
P2 “Dg)s 63.42 1335708 0.114 3p;  3pY 77.115 2507.652 0.0732
NI 2522p — 252p? 2P1°/2 2D§/2 0 989.790 0.123 3Py 3pg 223.157 2516.870 0.115
21{;/2 2D5°/2 174 .4 991.577 0.110 PII  3s23p? — 3s3p3 3Pg 3pp 0 1301.87 0.038
3 3
Cl  2s22p — 2s22p3s 3Py 3PO 0 1656.928  0.140 31131 3113 2 416694-192 g(l)g-;‘g 8-?}2
3p, 3po 16.40 1656.267  0.0588 o o L 3 0 1190906 061
3p,  3pp 43.40 1657.008  0.104 SHI 3s3p® — 3s3p 350 spb 208 0 onoa 0ol
NII 2522p® — 252p 3Po DY 0 1083.990  0.115 3p.  3p> £33.08 120007 051
5Py DY 48.7 1084.580  0.0861 clv 232 3.3 3P2 3p% 0 971351 055
3p,  3D2 130.8 1085.701  0.0957 3s73p7 —3s3p7 - Po DY : -
29p3 — 2522p23s 482, 4p 0 1199.550  0.130 P b 20 o776 04l
NI 2e72p7 —25%2p73s - Sypp P2 : : 3Py, 3D 1341.9 98495 047
o
Ss/2  Ps2 0 1200225 00862 "Tpy 35738 — 3573p%4s 1S5, Ps) 0 1774951 0.154
Ol  2s%2p* —25%2p33s 3Py °Sp 0 1302.168  0.0520 SIT 3s23p® —3s23p%4s 4Sg, 4P 0 1259.518 0.12
3 3
o OSE 158.265 1304.858 = 0.0518 oy 34238 — 3423p24s 482, 4Py, 0 1015.019 0.58
Po S? 226.977 1306.029  0.0519 T 35 5 3P/ Too n TTEETROYT
692. _ 9.6 2 2po S§TOpT — 987 IopT4as 2 1 . .
Mgl 2p83s — 2p%3p 231/2 21310/2 0 2803.531  0.303 3p,  8gb 206,055 1820.343 011
Si/2. “Pg 0 2796.352  0.608 8p, 389 573.640  1826.245 0.11
AllIl 2p%3s —2p°3p Sy PP, 0 1862.790  0.277 CIT  3s23p* —3s3p5 3Py  3PY 0 1071.036 0.014
’S1/2 *Pg, 0 1854716 0.557 P SPY 696.00 1079.080 0.00793
S 996.47 1075.230 0.019
CIT 3s%3p® —3s?3pds °P9, “Py)s 0 1347.240 0.114
P2, ?Pg 882.352 1351.657 0.0885
Arll  3s23p° —3s3p® P9, 2Sy)p 0 919.781  0.0089
P2, %S/ 1431.583  932.054  0.0087
Arl 3p% — 3p°4s 1So  2[1/2]° 0 1048.220 0.25

@ Transition data from NIST Atomic Spectra Database v4.0.0 (Ralchenko et al. 2010)
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P Cygni Profile

e The PCygni profile is characterized by strong emission lines with corresponding blueshifted
absorption line.
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zeta Puppis (Snow et al., 1994, AplS, 95, 163)

Circinus X-1
(Brandt & Schulz, 2000, ApJ, 544, 1.123)
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P Cygni profile formation

e The blueshifted absorption line is produced by material moving away from the star and toward
us, whereas the emission come from other parts of the expanding shell.

Figures from Joachim Puls
- ‘\ slightly modified
N\

OBSERVER e

absorption emission P Cygni profile

/
Vmax O _Vmax
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Lya Resonance Scattering
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Fig. 1. Predicted emergent Lya profiles for monochromatic line radia-
tion emitted in a dust-free slab of different optical depths (solid lines)
compared with analytic solutions from Neufeld (1990, dashed). The
dotted blue curve shows the line profile obtained using a frequency
redistribution function, which skips a large number of resonant core
scatterings. The adopted conditions of the medium are: 7 = 10 K (i.e.
a=15x1072)and 7o = 10*, 10°, 10° from top to bottom. The green
long-dashed curve, obtained with a dipolar angular redistribution, over-
laps perfectly the black solid line obtained with the isotropic angular
redistribution function, illustrating the fact that in static media, isotropy
is a very good approximation.

Verhamme et al. (2006, A&A, 460, 397)
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ID  wvg(core)  vgis(shell) Ny Voutflow
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4691 600 60 4 x10"7 12 3.30
5215 500 125 <2x 10 125 3.15
7539 1140 190 2.5 x10' 190 320

Comparizon of the observed Lya lines (solid lines) and the
best-fit theoretical models. The dashed line indicates the
noise level of the observed spectrum.
Tapken et al. (2007, A&A, 467, 63)

13E 92 302 €Y

21



Homework

e Solve the problem 3.2 for the cyclotron or gyro radiation (nonrelativistic version of the
synchrotron radiation)
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