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More about Intensity, Flux
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• Consider a ray propagating in the direction      and an area 
element        normal to     .

• Intensity is the energy crossing a unit area normal to the ray 
direction per unit time per unit frequency per solid angle.

• Flux is the energy crossing a unit area normal to a given 
orientation      per unit time per unit frequency, integrated 
over all solid angle.

The contribution of the ray with a propagation direction      to 
the flux is

Then,  the flux is given by integrating over all solid angle

Intensity and Flux
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Constancy of Specific Intensity in Free Space
• Consider a bundle of rays and two points along the rays.

Energy going out of “point 1” toward “point 2”:

Energy coming into “point 2” from “point 1”:

• Because energy is conserved:

Since                                                     ,  we obtain               .I1 = I2

d⌦1

R R

d⌦2 d⌦2
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• Consider the z-component of the energy flow passing through the area        normal to   .

area normal to 

z-component of the energy flow =

• Pressure flux = the flux of z-component of the energy flow passing through      :

Pressure flux
ẑ

p⌫ =

1

c

Z
I⌫ cos

2 ✓d⌦

ẑ
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Radiation from Moving Charges
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Potentials of a single moving charge (the Lienard-Wiechart potentials)

• Retarded potentials:

• It is convenient to rewrite the equations as integrals over 4D spacetime:

• Consider a particle of charge q that moves along a trajectory              . Its velocity is 
then                    . The charge and current densities are given by

• Then, the potentials become

t0 ⌘ tret = t� |r� r0|
c

r = r0(t)

u(t) = ṙ0(t)

�(r, t) =

Z
d3r0

Z
dt0

⇢(r0, t0)

|r� r0| �(t
0 � t+ |r� r0|/c)

A(r, t) =
1

c

Z
d3r0

Z
dt0

j(r0, t0)

|r� r0|�(t
0 � t+ |r� r0|/c)

�(r, t) =

Z
d3r0

⇢(r0, t0)

|r� r0| , A(r, t) =
1

c

Z
d3r0

j(r0, t0)

|r� r0|

⇢(r, t) = q�(r� r0(t)), j(r, t) = qu(t)�(r� r0(t))
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•  

•  

•  

Note on the Dirac delta function.

 y ⌘ g(x0)

dy = (dg/dx0)dx0

dx

0 =
dy

(dg/dx0)

where xj are roots of the equation y = g(x) = 0

Z
f(x)�(x� x0)dx = f(x0) if x0 is not a function of x.

Z
f(x)�(g(x))dx =

Z
f(x)�(y)

dy

(dg/dx)

=

X

xj

f(x

j

)

dg/dx|
xj
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• Let’s define

• We then have

• Change of variables:

R(t0) ⌘ r� r0(t
0) ! R(t0) = |r� r0(t

0)|

t00 = t0 � t+R(t0)/c ! dt00 =


1 +

1

c
Ṙ(t0)

�
dt0

R2(t0) = R(t0) ·R(t0)

2R(t0)Ṙ(t0) = �2R(t0) · u(t0)  Ṙ(t0) = �u(t0)

Ṙ(t0) = �R(t0)

R(t0)
· u(t0)

n(t0) ⌘ R(t0)

R(t0)
! Ṙ(t0) = �n(t0) · u(t0)

dt00 =


1� 1

c
n(t0) · u(t0)

�
dt0

(t0) ⌘ 1� 1

c
n(t0) · u(t0) ! dt00 = (t0)dt0
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The Lienard-Wiechart Potential

The equations then becomes by setting

• Beaming effect: The factor                                                becomes very important at 
velocities close to the speed of light, where, it tends to concentrate the potentials into a 
narrow cone about the particle velocity.

• Retardation makes it possible for a particle to radiate: In static case, differentiation of 
the       potential to find the fields gives a          decrease. However, the implicit 
dependence of the retarded time on position gives        behavior of the fields. This allows 
radiation energy to flow to infinite distances. 

�(r, t) = q

Z
dt00

(t0)R(t0)
�(t00)

A(r, t) =
q

c

Z
dt00u(t0)

(t0)R(t0)
�(t00)

t00 = 0 ! t0 = tret ⌘ t�R(tret)/c

�(r, t) =
q

(tret)R(tret)

A(r, t) =
1

c

qu(tret)

(tret)R(tret)

(tret) = 1� n(tret) · u(tret)/c

1/r 1/r2

1/r

Liénard�Wiechart potentials

(리에나르-비헤르트)
(French-German)
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Electromagnetic Fields
• Then, the electromagnetic fields is obtained (see Jackson 14.1):

• Note E, B and n form a right-handed triad of mutually perpendicular vectors, and 
that                 . These properties are consistent with the solutions of the source-free 
Maxwell equations.

B = r⇥A

E = �r�� 1

c

@A

@t
E(r, t) = q


(n� �)(1� �2)

3R2

�
+

q

c

h n

3R
⇥ {(n� �)⇥ �̇}

i

B(r, t) = n⇥E(r, t)

where u ⌘ ṙ0(tret)

� ⌘ u(tret)

c
=

ṙ0(tret)

c

�̇ ⌘ u̇(tret)

c
=

r̈0(tret)

c
R ⌘ r� r0(tret)

n ⌘ R

R
=

r� r0(tret)

|r� r0(tret)|
 ⌘ 1� n · �

velocity field acceleration field

|E| = |B|

�̇ n

(r, t)

Geometry for calculation of the radiation 
field at a point           in spacetime.(r, t)
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“Velocity” Field
• The first term depends only on position and velocity. When the particle moves with 

constant velocity it is only this term that contributes to the fields.

Displacement (of the photon) from the retarded point             (point at       ) to the field 
point     during the light travel time =                   .

In the same time, the particle undergoes a displacement                   .

The displacement between the field point and the current position of the particle 
is                            , which is the direction of the velocity field.

• Therefore, the “velocity” electric field always points along the line toward the 
“current” position of the particle.

• The “velocity” field becomes precisely Coulomb’s law as                        .

Evel(r, t) = q


(n� �)(1� �2)

3R2

�

tretr0(tret)

r nc(t� tret)

�c(t� tret)

(n� �)c(t� tret)

u ⌧ c (� ⌧ 1)
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• The second term (1) falls off as 1/R, (2) is proportional to the particle’s acceleration, and (3) is 
perpendicular to    .

• Let’s consider a particle, which originally moved with a constant velocity along the x-axis and 
stopped at x = 0 at time t = 0. At time t, the field outside radius ct is radial and points to the 
position where the particle would have been if there had been no deceleration, since no 
information of the deceleration has yet propagated. On the other hand, the field inside radius ct is 
“informed” and is radially directed to the true position of the particle.

“Acceleration” Field

Erad(r, t) =
q

c

h n

3R
⇥ {(n� �)⇥ �̇}

i

Brad(r, t) = n⇥Erad(r, t)

n

The figure demonstrates how an acceleration 
can give rise to a transverse field that 
decreases as 1/R.
The radial thickness of transition zone will be 
constant. However, the radius of the zone 
increases as R. Since the total number of flux 
lines (in xy-plane) is conserved.

E�x(2⇡R) = constant

) E / 1

R

The Velocity and Radktion Fieus 81 

the field point from the retarded point is ncf, where i= t -  tret is the light 
travel time. In the same time the particle undergoes a displacement Ipci. 
The displacement between the field point and the current position is thus 
(n -Ip)ci, which is seen to be the direction of the velocity field in Eq. (3.9a). 

The second term, the acceleration field, falls off as 1/ R, is proportional 
to the particle’s acceleration and is perpendicular to n. This electric field, 
along with the corresponding magnetic field, constitutes the radiation field: 

(3. IOa) 

= [ x Erad]. (3.1 Ob) 

Note that E, B and n form a right-hand triad of mutually perpendicular 
vectors, and that IEradl = lBradI. These properties are consistent with the 
radiation solutions of the source-free Maxwell equations. 

Figure 3.2 demonstrates geometrically how an acceleration can give rise 
to a transverse field that decreases as 1 / R, rather than the 1 / R decrease 
of a nonaccelerated charge. The particle originally moved with constant 
velocity along the x-Exis and stopped at x=O at time t = O .  At t= 1 the 
field outside of a radius c is radial and points to the position where the 
particle would have been had there been no deceleration, since no infor- 
mation of the latter has yet propagated to this distance. On the other hand, 
the field inside radius c is “informed” and is radially directed to the true 
position of the particle. There is only one way these two’ fields can be 

4 n  
Erad(r, t ,  = - [ - x { (n-8) x b } ] .  

K ~ R  

x = o  x = l  

Figure 3.2 Gmphical akmonstmtion of the l / R  accelemtion field Charged 
parti& mouing at uni~orm oelociry in psirive x direction is stopped at x = 0 and 
t -0 .  

x = ct

z

x

        

      

r > ct

       x = 0
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Radiation Power
• Power per unit frequency per unit solid angle

Note: the expression in the brackets is evaluated at the retarded time                          .

change of variables:

If                         ,   (1)

                                
                                (2)
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(3)

We can integrate the above equation by parts to obtain an expression without      .

How?

We first need to show that:

With the rule:

we obtain

This formula will be used later.

This term vanishes under the 
assumption of a finite wave train.

dW
dωdΩ

= q
2ω 2

4π 2c
n× (n× β )exp iω t ′ − n ⋅r(t ′)

c
⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥
dt ′∫

2
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• Proof of the relation:

note the vector identity:
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Radiation from Nonrelativistic Particles
• The previous formulae is fully relativistic. However, for the moment, we will discuss 

nonrelativistic particles:

• Order of magnitude comparison of the two fields:

If the particle has a characteristic frequency of oscillation              , then             , and the 
above equation becomes:

For field points inside the “near zone”,            , the velocity field is stronger than the 
radiation field by a factor                  .

For field points sufficiently far in the “far zone”,                    , the radiation field 
dominates.

� =
u

c
⌧ 1

Erad ⇡ q

c

�̇

3R
, Evel ⇡

q

3R2
! Erad

Evel
⇡ Ru̇

c2

u̇ ⇠ u⌫⌫ ⇠ 1/T

Erad

Evel
⇠ Ru⌫

c2
=

u

c

R

�

R . �
c/u = 1/�

R � �(c/u)
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Larmor’s Formula
• When           ,

• The Poynting vector is in direction of n and has a magnitude.

� ⌧ 1 Erad(r, t) =
q

c

h n

3R
⇥ {(n� �)⇥ �̇}

i

⇡
h q

Rc2
n⇥ (n⇥ u̇)

i

Brad(r, t) = n⇥Erad(r, t)

Brad

Erad

n

u̇

⇥

O

plane of n and u̇

n⇥ (n⇥ ˙u) = n(n · ˙u)� ˙u

{n⇥ (n⇥ ˙u)}2 = (n · ˙u)2 + (

˙u)2 � 2(n · ˙u)2

= u̇2
cos

2
⇥+ u̇2 � 2u̇2

cos

2
⇥

= u̇2
(1� cos

2
⇥)

= u̇2
sin

2
⇥

) |Erad| = |Brad| =
qu̇

Rc2
sin⇥

S =
c

4⇡
E⇥B =

c

4⇡
E2

radn

S =
c

4⇡

q2u̇2

R2c4
sin2 ⇥ ⌘ dW

dtdA

Note:

(erg s�1 cm�2)
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• Energy emitted per unit time into solid angle about n:

• Total power emitted into all angles:

1. The Power emitted is proportional to the square of the charge and the square of the 
acceleration.

2. Characteristic dipole pattern               : no radiation is emitted along the direction of 
acceleration, and the maximum is emitted perpendicular to acceleration.

3. The instantaneous direction of         is determined by     and n. If the particle accelerates 
along a line, the radiation will be 100% linearly polarized in the plane of     and n.

dW

dtd⌦
= R2 dW

dtdA
= R2S

=
q2u̇2

4⇡c3
sin2 ⇥

P =
dW

dt
=

Z
d⌦

q2u̇2

4⇡c3
sin2 ⇥ =

q2u̇2

2c3

Z 1

�1
(1� µ2)dµ

P =
2q2u̇2

3c3
Larmor’s Formula

/ sin2 ⇥

Erad u̇

u̇

dP

d⌦
=

q2u̇2

4⇡c3
sin2 ⇥
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Dipole Approximation
• Consider many particles with positions    , velocities     , and charges                             . The 

radiation field at large distances can be found by adding together the          from each particle.

• However, the radiation field equations refer to conditions at retarded time, and the retarded times 
will differ for each particle. Therefore, we must keep track of the phase relations between the 
particles.

• There are situations in which it is possible to ignore this difficulty:

If                 (light-travel-time), the differences in retarded time across the source are negligible.

Note that      can represent the time scale over which significant changes in the radiation field, 
and this in turn determines typical characteristic frequency of the emitted radiation.

The above condition is equivalent to the condition for the characteristic frequency (or 
characteristic wavelength) :

Therefore, the differences in retarded times can be ignored when the system size is smaller than 
the characteristic wavelength.

We may also characterize      as the time a particle takes to change its motion substantially.

Let  l be a characteristic scale of the particle’s orbit and u be a typical velocity,then              . 

ri ui qi(i = 1, 2, · · ·N)

Erad

Let L = typical size of the system
          = typical time scale for variations within the system⌧

⌧ � L/c

⌧

⌫ ⇡ 1

⌧
⌧ c

L
or � =

c

⌫
� L

⌧

⌧ ⇠ l/u

20



The above condition                 then imply

But since           , this is simply equivalent to the nonrelativistic condition: 

• With the above conditions met we can write:

• Let        be the distance from some point in the system to the field point.

• Then, we have

where the dipole moment

Note that the right-hand side of the above equations must still be evaluated at a retarded time, but 
using any point within the region, say,       . 

⌧ � L/c

u/c = l/(⌧c) ⌧ l/L

l < L

u ⌧ c

Erad =
X

i

qi
c2

n⇥ (n⇥ u̇i)

Ri

R0

Erad =
1

c2
n⇥ (n⇥

P
i qiu̇i)

R0

=
n⇥ (n⇥ d̈)

c2R0

d̈ ⌘
X

i

qiri

Ri = R0 + li ⇡ R0 as R0 ! 1

R0
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• Dipole approximation:

The instantaneous polarization of E lines in the plane of      and n.

• Power spectrum of radiation in the dipole approximation:

For simplicity we assume that d always lies in a single direction.

Note the                   dependence.

the spectrum of the emitted radiation is related directly to the frequencies of oscillation of 
the dipole moment. However, this property is not true for relativistic particles.

dP

d⌦
=

d̈2

4⇡c3
sin2 ⇥, P =

2d̈2

3c3

Radiation from Nonrehtkistic Systems of P&&s 87 

As before, we find 

sin’ 0, dP d2 -=- 
dQ 4nc3 

P=,. 2d2 
3c 

(3.23a) 

(3.23b) 

This is called the dipole approximation and is a generalization of the 
formulas [Eqs. (3.18) and (3.19)] for a single nonrelativistic particle. The 
instantaneous polarization of E lies in the plane of d and n (see Fig. 3.5). 

As an application of the preceding analysis, let us consider the spectrum 
of radiation in the dipole approximation. For simplicity we assume that d 
always lies in a single direction. Then from Eq. (3.22a), we have 

sin 0 
c2R, 

E ( t )  = a( t)- , (3.24) 

where E ( t )  and d(t)  are the magnitudes of E(t) and d(t) ,  respectively. The 

Figure 3.5 Geometry and emission pattern for dipole radiation. 

d̈

dW

d!d⌦
=

1

c3
!4|d̄(!)|2 sin2 ⇥

dW

d!
=

8⇡!4

3c3
|d̄(!)|2

dW

d!d⌦
= R2

0
dW

d!dA
!

E(t) = d̈(t)
sin⇥

c2R0
, d(t) =

Z 1

�1
e�i!td̄(!)d!

d̈(t) = �
Z 1

�1
!2e�i!td̄(!)d!

) Ē(!) = � 1

c2R0
!2d̄(!) sin⇥

!4 / ��4
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Multipole Expansion
• Vector potential:

• Consider a Fourier analysis of the sources and fields:

• Let’s choose an origin of coordinates inside the source of size L.  At field points such that            . 

A(r, t) =
1

c

Z
d3r0

Z
dt0

j(r0, t0)

|r� r0|�(t
0 � t+ |r� r0|/c)

r ⌧ L

j!(r) =

Z
j(r, t)ei!tdt

A!(r) =

Z
A(r, t)ei!tdt =

1

c

Z
d3r0

Z
dt0

Z
dt

j(r0, t0)

|r� r0|e
i!t�(t0 � t+ |r� r0|/c)

=
1

c

Z
d3r0

Z
dt0

j(r0, t0)

|r� r0|e
i!t0ei!|r�r0|/c

=
1

c

Z
d3r0

j!(r0)

|r� r0|e
ik|r�r0|  k ⌘ !/c Note this equation relate single Fourier 

components of source and potential.
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• The Fourier component becomes:

• The factor                outside the integral expresses the effect of retardation from the source as a 
whole. The factor                           inside the integral expresses the relative retardation of each 
element of the source.

• In our slow-motion approximation,                             . Expanding the exponential in the integral:

Dipole approximation results from taking just the first term (n = 0):

Quadrupole term is the second term:

A!(r) ⇡ (eikr/cr)

Z
j!(r

0)e�ikn·r0d3r0

exp(ikr)

exp(�ikn · r0)

kL = 2⇡L/� ⌧ 1

A!(r)|quad =
�ikeikr

cr

Z
j!(r

0)(n · r0)d3r0

A!(r)|dipole =
eikr

cr

Z
j!(r

0)d3r0
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