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Useful Mathematical Formulae
• Dirac delta function:

• Fourier Transform:

• Vector identities:

Rybicki Afken (Mathematical Methods for Physicists)

Parseval’s
Theorem

r⇥ (r�) = 0

r · (r⇥A) = 0

r⇥ (r⇥A) = r(r ·A)�r2A

r · (A⇥B) = B · (r⇥A)�A · (r⇥B)

ā(!) =
1

2⇡

Z 1

�1
a(t)e�i!tdt

a(t) =

Z 1

�1
ā(!)ei!td!

Z 1

�1
a(t)b⇤(t)dt = 2⇡

Z 1

�1
ā(!)b̄⇤(!)d!

Z 1

�1
|a(t)|2dt = 2⇡

Z 1

�1
|ā(!)|2d!

ā(!) =
1p
2⇡

Z 1

�1
a(t)ei!tdt

a(t) =
1p
2⇡

Z 1

�1
ā(!)e�i!td!

Z 1

�1
a(t)b⇤(t)dt =

Z 1

�1
ā(!)b̄⇤(!)d!

Z 1

�1
|a(t)|2dt =

Z 1

�1
|ā(!)|2d!

�(! � !0) =
1

2⇡

Z 1

�1
ei(!�!0)tdt =

1

2⇡

Z 1

�1
e�i(!�!0)tdt

A⇥ (B⇥C) = B(A ·C)�C(A ·B)

A · (B⇥C) = B · (C⇥A) = C · (A⇥B)
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Basic Theory of Radiation Fields
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Electromagnetic force on a single charged particle
• Lorentz force: If a particle of charge q and mass m moves with velocity     in the 

presence of an electric field     and a magnetic field    , then it will experience a force:

(in Gaussian units, or cgs units)

• Power supplied by the EM fields (the rate of work done by the fields) on a particle is

• Note                          , meaning that the magnetic fields do not work. 

E B
v

F = q
⇣
E+

v

c
⇥B

⌘

v · F = qv ·
⇣
E+

v

c
⇥B

⌘

v ·mdv

dt
= qv ·E

) dUmech

dt
⌘ d

dt

✓
1

2
mv2

◆
= qv ·E

v · (v ⇥B) = 0

4



Electromagnetic force on a continuous medium
• Consider a medium with charge density and current density:

• Force density (force per unit volume):

• Power density supplied by the field (the rate of work done by the field per unit volume):

Note typos in the textbook. They use the same symbol to denote the energy density u and 
the total energy U within in a volume.

⇢ ⌘ lim
�V!0

1

�V

X

i

qi

j ⌘ lim
�V!0

1

�V

X

i

qivi

f = ⇢E+
1

c
j⇥B

dumech

dt
⌘ lim

�V!0

1

�V

X

i

qivi ·E = j ·E
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Maxwell’s equations
• Maxwell’s eqs. (in macroscopic forms) relates fields to charge and current densities.

Dielectric material (절연체): an electrical insulator that can be polarized by an applied electric field. 
Electric charges do not flow through the material as they do in a conductor, but only slightly shift from 
their average equilibrium positions causing dielectric polarization.

Permeability (투자율): the degree of magnetization of a material in response to a magnetic field.

Note                   in the absence of dielectric or permeability media.

• Conservation of charge

r ·D = 4⇡⇢

r ·B = 0

r⇥E = �1

c

@B

@t

r⇥H =
4⇡

c
j+

1

c

@D

@t

Gauss’s law
Gauss’s law for magnetism
(no magnetic monopoles)

Maxwell-Faraday equation

Ampere-Maxwell equation

D = ✏E

B = µH

✏ : dielectric constant

µ : magnetic permeability

✏ = µ = 1

r · (r⇥H) = r ·
✓
4⇡

c
j+

1

c

@D

@t

◆

0 =
4⇡

c
r · j+ 1

c

@

@t
(4⇡⇢)

! r · j+ @⇢

@t
= 0

macroscopic fields
microscopic fields

D,H :

B,E :
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Electromagnetic Field Energy
• Use the Ampere’s law to obtain the mechanical energy density

• Use a vector identity and Faraday’s law:

Then,

• Poynting’s theorem in differential form.

• Electromagnetic field density (field energy per unit volume) and Poynting vector 
(electromagnetic flux vector) are identified:

j ·E =
1

4⇡

✓
�cr · (E⇥H)�H · @B

@t
�E · @D

@t

◆

j ·E+
1

8⇡

@

@t

✓
✏E2 +

B2

µ

◆
= �r ·

⇣ c

4⇡
E⇥H

⌘

ufield =
1

8⇡

✓
✏E2 +

B2

µ

◆
= uE + uB

dumech

dt
= j ·E =

1

4⇡
E ·

✓
cr⇥H� @D

@t

◆

S =
c

4⇡
E⇥H

E · (r⇥H) = H · (r⇥E)�r · (E⇥H)

= �1

c
H · @B

@t
�r · (E⇥H)
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• The Poynting’s theorem becomes an expression of the local conservation of energy.

• Integrating the equation over a volume element and using the divergence theorem, we 
obtain the conservation of energy:

or

Meaning: the rate of change of total (mechanical + field) energy within the volume V is 
equal to the net inward flow of energy through the bounding surface     .

d

dt
(Umech + Ufield) = �

Z

⌃
S · dA

Z

V
(j ·E)dV +

d

dt

Z

V

✓
✏E2 +B2/µ

8⇡

◆
dV = �

Z

⌃
S · dA

@

@t
(umech + ufield) +r · S = 0

Here,
Umech ⌘

Z

V
umechdV and Ufield ⌘

Z

V
ufielddV

⌃

S

⌃

V
dA

Z

V
r · SdV =

Z

⌃
S · dA

divergence theorem:
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• In electrostatics and magnetostatics, we recall that

• However, for time-varying fields, we will find that

• This finite energy flowing outward (or inward) at large distances is called radiation. 
Those parts of E and B that decreases as         at large distances are said to constitute the 
radiation field.

E / r�2 and B / r�2 as r ! 1

E / r�1 and B / r�1 as r ! 1

! S / r�4

)
Z

⌃
S · dA 6= 0 as r ! 1

r�1

)
Z

⌃
S · dA = 0 as r ! 1
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Electromagnetic Waves
• In vacuum                                        , Maxwell’s equations give the vector wave equations:

• Fourier transform of fields:

• Inverse transformation:

• Apply the wave equation to Fourier expansion:

(⇢ = 0 = j, ✏ = 1 = µ)

r2E� 1

c2
@2E

@t2
= 0

r2B� 1

c2
@2B

@t2
= 0

Ē(k,!) =
1

(2⇡)4

Z
d3r

Z
dtE(r, t)e�i(k·r�!t)

E(r, t) =

Z
d3k

Z
d!Ē(k,!)ei(k·r�!t)

r2E� 1

c2
@E

@t2
= �

Z
d3k

Z
d!

✓
k2 � !2

c2

◆
E(k,!)ei(k·r�!t)

= 0

wavevector k :

magnitude k = 2⇡/� = !/c, direction

ˆk = k/k

angular frequency : ! = 2⇡⌫

r⇥E = �1

c

@B

@t

r⇥ (r⇥E) = �1

c

@

@t
(r⇥B)

r(r ·E)�r2E = � 1

c2
@2E

@t2

) r2E� 1

c2
@2E

@t2
= 0

r⇥B =
1

c

@E

@t

r⇥ (r⇥B) =
1

c

@

@t
(r⇥E)

r(r ·B)�r2B = � 1

c2
@2B

@t2

) r2B� 1

c2
@2B

@t2
= 0
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Dispersion relation
• We obtain the vacuum dispersion relation, phase velocity, and group velocity:

dispersion relation = a function which gives     as a function of k.

phase velocity = the rate at which the phase of the wave propagates in space.

group velocity = the velocity with which the overall shape of the waves’ amplitudes 
(modulation or envelope of the wave) propagates through space.

• Assume the wave packet E is almost monochromatic, so that its Fourier component is 
nonzero only in the vicinity of a central wavenumber     . Then, linearization gives: 

• The envelope of the wavepacket travels at velocity                             .

! = ck vph ⌘ !

k
= c vg ⌘ @!

@k
= c

Wikipidia

 vph ! vg

!

!(k) ⇡ !0 + (k � k0)
@!(k)

@k
|k=k0

= !0 + (k � k0)!
0
0

k0

E(x, t) =

Z
dk

Z
d!Ē(k,!)ei(kx�!t)

⇡ e

it(!0
0k0�!0)

Z
dkĒ(k,!0)e

ik(x�!

0
0t)

|E(x, t)| = |E(x� !

0
0t, 0)|

!0
0 = (@!/@k)k=k0
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Properties of a single Fourier mode
• Consider an arbitrary Fourier mode in vacuum:

• Substituting into Maxwell’s equations yields:

(1) EM waves are transverse (perpendicular to the direction of propagation).

(2) E and B are orthogonal to each other.

(3)                    form an orthogonal basis

(4) Field amplitudes are equal:

E = E0e
i(k·r�!t)â1 B = B0e

i(k·r�!t)â2

r ·E = 0 ! k ·E = 0

r ·B = 0 ! k ·B = 0

r⇥E = �1

c

@B

@t
! k⇥E =

!

c
B

r⇥B =
1

c

@E

@t
! k⇥B = �!

c
E

(                  are complex constants.)E0 and B0

or

ˆk⇥E = B

or

ˆk⇥B = �E

k̂

E

B

k̂⇥E = B ! k̂⇥ â1E0 = â2B0

! E0(k̂⇥ â1) · â2 = B0

! E0 = B0

⇣
k = k̂

!

c

⌘

|B| = |E|, B0 = E0 and �B = �E

E0 = |E|ei�E

B0 = |B|ei�B
! �E = �B

(k̂, â1, â2)
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• If A(t) and B(t) are two complex quantities with the same sinusoidal time dependence,

then the time average of the product of their real parts is

• Time-averaged Poynting vector amplitude:

• Time-averaged field energy density:

• Velocity of energy flow:

hReA(t) · ReB(t)i = 1

4

⌦�
Aei!t +A⇤e�i!t

� �
Bei!t + B⇤e�i!t

�↵

=
1

4
hAB⇤ +A⇤Bi

=
1

2
Re(AB⇤) =

1

2
Re(A⇤B)

A(t) = Aei!t B(t) = Bei!t

hSi / hUfieldi = c

hUfieldi =
1

8⇡

⌦
|E|2 + |B|2

↵
=

1

16⇡
Re(E0E

⇤
0 +B0B

⇤
0) =

1

8⇡
|E0|2 =

1

8⇡
|B0|2

note : E and B are real.

hSi = c

4⇡

D
Re

⇣
E0e

i(k·r�!t)
⌘
Re

⇣
B0e

i(k·r�!t)
⌘E

=
c

8⇡
Re (E0B

⇤
0)

=
c

8⇡
|E0|2 =

c

8⇡
|B0|2  E0 = B0
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Power Spectrum
• A common property of any wave theory:

If we have a time record of the radiation field of length     , we can only define the 
spectrum to within a frequency resolution       where

• Let us consider only a component of the transverse electric field:

• Fourier transform and its inverse are:

Since E(t) is real, the negative frequencies are redundant, i.e.,                         .

• Total energy per unit area per unit time:

• Total energy per unit area:

�t

�!

�!�t > 1. (uncertainty relation)
E(t) ⌘ â ·E(t)

Ē(!) =
1

2⇡

Z 1

�1
E(t)ei!tdt, E(t) =

Z 1

�1
Ē(!)e�i!td!

Ē(�!) = Ē⇤(!)

dW

dAdt
=

c

4⇡
E2(t)

dW

dAd!
= c|Ē(!)|2

(Poynting vector)

Z 1

�1
E2(t)dt = 2⇡

Z 1

�1
|Ē(!)|2d!Here, we used Parseval’s theorem:

Energy per unit area per unit frequency:dW

dA
=

Z 1

�1

dW

dAdt
dt =

c

4⇡

Z 1

�1
E2(t)dt

=
c

2

Z 1

�1
|Ē(!)|2d! = c

Z 1

0
|Ē(!)|2d!
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exp(�t/T ) sin!0t

electric field power spectrum
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Polarization
• Let us consider a plane EM wave propagating in the +z direction, and examine the 

electric vector at an arbitrary point (say, r = 0). Because the electric field is transverse, the 
electric field can be expressed as

Complex amplitudes can be expressed as

Then, the real part of E is

As a function of time, the tip of E will trace out an ellipse, meaning that the general wave 
is elliptically polarized.

• In general, the principal axes of this ellipse will have a tilt angle    w.r.t. to x-y axes. We 
define the zero of time so that E lies along the x’ direction at t = 0.

• Taking time average of the       , we obtain:

Elliptical Polarization

in the general case

Ex = E1 cos(ωt− φ1) Ey = E2 cos(ωt− φ2)

intuitively, blends linear and circular features:

→ elliptical polarization

E

y

x

x
y

χ

’
’

ellipse orientation fixed by E1 − E2 difference
ellipse eccentricity and helicity fixed by φ1 − φ2 difference

in coordinates (x′, y′) rotated to align with principal axes

E′
x = E0 cos β cos(ωt) E′

y = E0 sin β sin(ωt)

for some β ∈ [−π/2,+π/2]
Q: evolution if β > 0?

1
1

E1 = E1ei�1 E2 = E2ei�2 where E1, E2,�1,�2 are real.

E =

ˆ

xE1 cos(!t� �1) + ˆ

yE2 cos(!t� �2)

�

E =

ˆ

x

0E 0
1 cos!t+ ˆ

y

0E 0
2 sin!t

|E|2

E = x̂E1e
�i!t + ŷE2e

�i!t

⌦
|E|2

↵
= E2

1 + E2
2 = E 02

1 + E 02
2 = constant ⌘ E2

0
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• We can satisfy the late part of the above equation by defining an ellipticity angle:

                              : clockwise (right-handed polarization, negative helicity)

                              : counterclockwise (left-handed polarization, positive helicity)

                              : circularly polarized

                              : linearly polarized

• With the relations

we obtain the relations:

Given                        , we can solve for               .

✓
ˆ

x

0

ˆ

y

0

◆
=

✓
cos� sin�
� sin� cos�

◆✓
ˆ

x

ˆ

y

◆
cos(a± b) = cos a cos b⌥ sin a sin b

E1 cos�1 = E0 cos� cos�

E1 sin�1 = E0 sin� sin�

E2 cos�2 = E0 cos� sin�

E2 sin�2 = �E0 sin� cos�

E 0
1 = E0 cos� E 0

2 = �E0 sin� where � ⇡/2  �  ⇡/2 (or E 0
2 = E0 sin�0, �0

= ��)

0 < � < ⇡/2

�⇡/2 < � < 0

� = ±⇡/4

� = 0 or ± ⇡/2

E1, �1, E2, �2 E0, �, �

ˆ

xE1 cos(!t� �1) + ˆ

yE2 cos(!t� �2)

=

ˆ

x

0E0 cos� cos!t� ˆ

y

0E0 sin� sin!t
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Stokes Parameters (for monochromatic waves)
• A convenient way to solve these equations is by means of the Stokes parameters for 

monochromatic waves.

Then, we have

Pure elliptical polarization is determined sole by three parameters                 .

• Meaning of the Stokes parameters:

I : total energy flux or intensity
V : circularity parameter (          : right-handed,           : left-handed)
Q, U : orientation of the ellipse (or line) relative to the x-axis

I ⌘ E2
1 + E2

2 = E2
0

Q ⌘ E2
1 � E2

2 = E2
0 cos 2� cos 2�

U ⌘ 2E1E2 cos(�1 � �2) = E2
0 cos 2� sin 2�

V ⌘ 2E1E2 sin(�1 � �2) = E2
0 sin 2�

(E0, �, �)

I2 = Q2 + U2 + V 2

for a monochromatic wave
(pure polarization)

V > 0 V < 0

E0 =
p
I, sin 2� =

V

I
, tan 2� =

U

Q

Q = U = 0, V 6= 0

Q⇥ U 6= 0, V = 0

Q⇥ U 6= 0, V 6= 0

: linear polarization
: circular polarization
: elliptical polarization
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Linear Circular Elliptical

|�1 � �2| = 0

|�| = 0,⇡/2

E1/E2 = const.

Figures from Wikipedia

|�1 � �2| = ⇡/2

|�| = ⇡/4

|E1/E2| = 1

|�1 � �2| 6= 0,⇡/2

|�| 6= 0,⇡/4,⇡/4

E1/E2 6= ±1
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Stokes Parameters (for quasi-monochromatic waves)
• In general, EM waves vary over time and with wavenumber. Clearly, then, the practical 

measurement of EM waves involves taking a time average over a time interval.

• Consider EM wave with slowly varying amplitudes and phases:

• How slow is slow? Quasi-monochromatic wave:

Assumption: over a time interval                          , the amplitudes and phases do not 
change significantly. By the uncertainty relation, its frequency spread       about the value  
can be estimated as                                  .

For this reason, the wave slowly varying over a time interval                           is  called 
quasi-monochromatic, and the time       is called the coherence time.

• The Stokes parameters for quasi-monochromatic waves are defined by the following 
average over time, to be consistent with the definition for monochromatic waves:

E1(t) = E1(t)ei�1(t) E2(t) = E2(t)ei�2(t)

�! !

�t > �tc = 1/!

�tc

�!/! ⇡ �tc/�t < 1

�t > �tc ⌘ 1/!

I ⌘ hE1E
⇤
1 i+ hE2E

⇤
2 i =

⌦
E2
1 + E2

2

↵

Q ⌘ hE1E
⇤
1 i � hE2E

⇤
2 i =

⌦
E2
1 � E2

2

↵

U ⌘ hE1E
⇤
2 i+ hE2E

⇤
1 i = h2E1E2 cos(�1 � �2)i

V ⌘ 1

i
(hE1E

⇤
2 i � hE2E

⇤
1 i) = h2E1E2 sin(�1 � �2)i
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• With the Schwartz inequality

we can easily verify that

The equality holds only for a completely polarized wave.

• Most sources of EM radiation a large number of atoms or molecules that emit light. The 
orientation of the electric fields produced by these emitters may not be correlated, in 
which case the light is said to be unpolarized. For completely unpolarized wave, where 
the phase difference             between      and      maintain no permanent relation and where 
there is no preferred orientation in the x-y plane, so that                     .

hE1E
⇤
1 i hE2E

⇤
2 i � hE1E

⇤
2 i hE2E

⇤
1 i

I2 � Q2 + U2 + V 2

�1 � �2 E1 E2 ⌦
E2
1

↵
=

⌦
E2
2

↵

Q = U = V = 0

Proof of the inequality:
Homework:
(1) Derive the Schwartz inequality.
(2) Show that I2 � Q2 + U2 + V 2
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Superposition of independent waves
• Radiation will generally originate from a variety of regions different polarizations and 

different wave phases. Consider therefore a beam consisting of a mixture of many 
independent waves:

Because the relative phases are random, only term k =  l survive the averaging. Therefore, 
the Stokes parameters have additive properties:

• By the superposition principle, an arbitrary wave can be decomposed of a completely 
unpolarized wave and a completely polarized wave.

• Proof of the inequality:

E1 =
X

k

E(k)
1 E2 =

X

k

E(k)
2 where k = 1, 2, 3, · · · .

⌦
EiE

⇤
j

↵
=

X

k

X

l

D
E(k)

i E(l)⇤
j

E
=

X

k

D
E(k)

i E(k)⇤
j

E
(i, j = 1 or 2)

I =
X

k

I(k), Q =
X

k

Q(k), U =
X

k

U (k), V =
X

k

V (k)

0

BB@

I
Q
U
V

1

CCA =

0

BB@

I �
p

Q2 + U2 + V 2

0
0
0

1

CCA+

0

BB@

p
Q2 + U2 + V 2

Q
U
V

1

CCA

I2 = (I
pol

+ I
unpol

)2 � I2
pol

= Q2 + U2 + V 2
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• Degree of polarization for a partially polarized wave = ratio of the intensity of the 
polarized part to the total intensity

• In the case of partial linear polarization (V = 0), the measurement consists of rotating a 
linear polarization filter until the maximum values of intensity are found. The maximum 
value will occur when the filter is aligned with the plane of polarization, and the 
minimum value will occur along in the direction perpendicular to it.

Total value of the unpolarized intensity is shared equally between any two perpendicular 
directions. Therefore,

This equation will underestimate the true degree of polarization if circular or elliptical 
polarization is present.

⇧ ⌘ I
pol

I
=

p
Q2 + U2 + V 2

I

I
max

=
1

2
I
unpol

+ I
pol

I
min

=
1

2
I
unpol

I
unpol

= I �
p

Q2 + U2

I
pol

=
p

Q2 + U2

where
) ⇧

linear

=
I
max

� I
min

I
max

+ I
min

I
max

= 1

2

(I
unpol

+ I
cir

) + I
lin

I
min

= 1

2

(I
unpol

+ I
cir

)
! I

max

� I
min

I
max

+ I
min

=
I
lin

I
<

I
pol

I
=

I
lin

+ I
cir

I
unpol

+ I
lin

+ I
cir
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Electromagnetic Potentials
• Vector potential: from the vector identity                         , the equation                 yields

Then, 

• Scalar potential: from the vector identity                      , this equation can be satisfied if 
we define a potential such as

• Gauge invariance:

B will be unchanged for any transformation

E will also be unchanged if at the same time the scalar potential is changed by

EM field is invariant under the Gauge transform

r ·B = 0r · (r⇥A) = 0

r⇥E+
1

c

@B

@t
= 0 ! r⇥

✓
E+

1

c

@A

@t

◆
= 0

r⇥ (r�) = 0

B = r⇥A

E = �r�� 1

c

@A

@t

A : vector potential

� : scalar potential

A ! A0 = A+r since r⇥ (r ) = 0

�! �0 = �� 1

c

@ 

@t

(�, A) !
✓
�� 1

c

@ 

@t
, A+r 

◆
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Lorentz Gauge
• The Lorentz gauge is the most important gauge in the EM theory, defined by:

• Maxwell’s equations:

• With the Lorentz gauge, the above equations become:

r ·A+
1

c

@�

@t
= 0

Note that we can alway choose a function      such as: 

r ·A0 +
1
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@�0
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Note : r⇥ (r⇥A) = �r2A+r(r ·A)
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Retarded potentials
• The solutions to the above equations are (called the retarded potentials, see Jackson):

• The retarded time refers to conditions at the point     that existed at a time earlier than t 
by just the time required for light to travel from    to   .

• The potentials responds to the changes after “retarded time” delay.

t0 ⌘ tret = t� |r� r0|
c

r0

r0 r

�(r, t) =

Z
d3r0

⇢(r0, t0)

|r� r0| , A(r, t) =
1

c

Z
d3r0

j(r0, t0)

|r� r0|
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Applicability of the Radiative Transfer Theory
• We defined specific intensity by the relation:

We should note that        and       cannot both be made arbitrarily small because of the 
uncertainty principle:

There is another limitation because of the energy uncertainty principle:

• Therefore, when the wavelength of light is larger than atomic dimensions (Bohr 
radius,                  ), as in the optical, we cannot describe the interaction of light on the 
atomic scale in terms of specific intensity.

• However, we may still regard transfer theory as a valid macroscopic theory, provided the 
absorption and emission properties are correctly calculated from microscopic theories 
(electromagnetic or quantum theory).

• A more precise, classical treatment of the validity of rays is known as the eikonal 
approximation. (from German “eikonal”, which is from Greek word meaning “image”)

dE = I⌫dAd⌦d⌫dt

dA d⌦

dxdp

x

dydp

y

= p

2
dAd⌦ � h

2 ! dAd⌦ � h

2
/p

2 = �

2

dEdt � h ! d⌫dt � 1

a0 = 0.53Å
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