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The Einstein Coefficients

• Consider a system with two discrete energy levels              and 
degeneracies            . Let             be the number densities of 
atoms in levels (1, 2).

Spontaneous Emission from level 2 to level 1:
The Einstein A-coefficient        is the transition probability per unit 
time for spontaneous emission.

Two-Level Systems in Radiative Equilibrium

consider an ensemble of systems (“atoms”) with
• two discrete energy levels E1, E2
• and degeneracies g1, g2
i.e., a number g1 of distinct states have energy E1

, 

E=hΔ ν0
emissionabsorption

2

1 g 1

E

E , level 1:

level 2: g 2

in thermodynamic equilibrium at T , emission and absorption
exchange energy with photon field

Q: when & why emit? absorb?
Q: connection between emission, absorption rates in ensemble?
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Absorption from level 1 to level 2 occurs in the presence of 
photons of energy       .
• The absorption probability per unit time is proportional to the 

density of photons (or to the mean intensity) at frequency     .
• In general, the energy difference between the two levels have 

finite width which can be described by a line profile function        .

• The Einstein B-coefficient        is defined by
            transition probability per unit time for absorption
where

Absorption

atoms in lower state E1 only promoted to state E2
by absorbing a photon of energy ∆E
hν +X1 → X2

if levels were perfectly sharp, absorb only at ∆E = hν0
but in general, energy levels have finite width
i.e., line energies “smeared out” by some amount h∆nu
so transitions can be made by photons with frequencies
ν0 −∆ν <∼ ν <∼ ν0 +∆ν

useful to define line profile function φ(ν)

with normalization
∫

φ(ν) dν = 1

e.g., Gaussian, Lorentzian, Voight functions

limiting case of sharp levels ∆ν → 0:

φ(ν) → δ(ν − ν0)
0ν

Δν

φ(ν)
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Stimulated emission from level 2 to level 1:
• Another Einstein B-coefficient is defined by

             transition probability per unit time for stimulated emission.
• Einstein found that to derive Planck’s law another process was 

required that was proportional to radiation field and caused 
emission of a photon.

• The stimulated emission is precisely coherent (same direction and 
frequency, etc) with the photon that induced the emission.

Note:
• Be aware that the energy density is often used instead of intensity 

to define the Einstein B-coefficients. 
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Relations between Einstein Coefficients

• In TE, total absorption rate = total emission rate:

• Populations of the atomic states follow the Boltzmann distribution.

• Therefore,

• In TE,             for all temperatures. We must have the following 
Einstein relations:

n1B12J̄ = n2A21 + n2B21J̄

! J̄ =
A21/B21

(n1/n2)(B12/B21)� 1

¯J =

A21/B21

(g1B12/g2B21) exp(h⌫0/kBT )� 1

J⌫ = B⌫

g1B12 = g2B21

A21 =
2h⌫3

c2
B21

n1

n2
=

g1 exp(�E1/kBT )

g2 exp(�E2/kBT )
=

g1
g2

exp(h⌫0/kBT ).
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Einstein relations:

• If we can determine any one of the coefficients, these relations 
allow us to determine the other two.

• These connect atomic properties                         and have no 
reference to the temperature. Thus, the relations must hold 
whether or not the atoms are in TE.

✦ If the relations were only for TE, the relations would contain the dependence on T.

• Without stimulated emission, Einstein could not get Planck’s law, 
but only Wien’s law.

✦ When                      (Wien’s limit), level 2 is very sparsely populated relative to 
level 1. Then, stimulated emission is unimportant compared to absorption.

g1B12 = g2B21

A21 =
2h⌫3

c2
B21

(A21, B21, B12)

h⌫ � kBT
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Radiative Transfer Equation in terms of Einstein Coefficients

Emission coefficient:
• assumption: the line profile function of the emitted radiation is the 

same profile as for the absorption        .
• energy emitted in volume     , solid angle     , frequency range    , 

and time    :

Here, note that each atom emits an energy      distributed over 
solid angle     .

• Then, the emission coefficient is given by

�(⌫)

dV d⌦ d⌫

dt

4⇡
h⌫

j⌫dV d⌦d⌫dt = (h⌫/4⇡)n2A21dV d⌦�(⌫)d⌫dt

j⌫ =
h⌫

4⇡
n2A21�(⌫)
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Absorption coefficient:
• energy absorbed out of a beam in frequency range     , solid 

angle     , time    , and volume

• Then, the absorption coefficient (uncorrected for stimulated 
emission) is given by

• What about the stimulated emission? It is proportional to the 
intensity, in close analogy to the absorption process. Thus, the 
stimulated emission can be treated as negative absorption. The 
absorption coefficient, corrected for stimulate emission, is

d⌫
d⌦ dt dV

↵⌫ =
h⌫

4⇡
n1B12�(⌫)

↵⌫ =
h⌫

4⇡
�(⌫) (n1B12 � n2B21)

↵⌫I⌫dV dtd⌦d⌫ = (h⌫/4⇡)n1B12I⌫dV dtd⌦�(⌫)d⌫
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Source function:

• Using the Einstein relations, the absorption coefficient and source 
function can be written

S⌫ =
j⌫
↵⌫

=
n2A21

n1B12 � n2B21

↵⌫ =
h⌫

4⇡
n1B12

✓
1� g1n2

g2n1

◆

S⌫ =

2h⌫3

c2

✓
g2n1

g1n2
� 1

◆�1

! generalized Kirchho↵

0
s law
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Thermal Emission (LTE)

• If the matter is in TE with itself (but not necessarily with the 
radiation), we have the Boltzmann distribution. The matter is said 
to be in LTE.

• In LTE, we obtain the absorption coefficient and the Kirchhoff’s 
law:

• The Kirchhoff’s law holds even in LTE condition.

n1

n2
=

g1
g2

exp (h⌫/kBT )

↵⌫ =

h⌫

4⇡
n1B12


1� exp

✓
� h⌫

kBT

◆�
�(⌫)

S⌫ = B⌫(T ) ! Kirchho↵

0
s law in LTE
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Normal & Inverted Populations

Normal populations:
• In LTE,

• The normal populations is usually satisfied even when the 
material is out of thermal equilibrium.

Inverted populations:

• In this case, the absorption coefficient is negative and the 
intensity increases along a ray.

• Such a system is said to be a maser (microwave amplification by 
stimulated emission of radiation; also laser for light...).

• The amplification can be very large. A negative optical depth of 
-100 leads to an amplification by a factor of                  .

n1

g1
<

n2

g2

n2g1
n1g2

= exp

✓
� h⌫

kBT

◆
< 1 ! n1

g1
>

n2

g2

e100 = 1043
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Scattering Effects: Pure Scattering

• Assumptions
isotropic scattering: scattered equally into equal solid angles
coherent scattering (elastic or monochromatic scattering): the total amount of radiation 
scattered per unit frequency is equal to the total amount absorbed in the same 
frequency range.
Thompson scattering (scattering from non-relativistic electrons) is nearly coherent.

• scattering coefficient

• source function

• radiative transfer equation

This is an integro-differential equation, and cannot be solved by the formal solution.
      Rosseland approximation, Eddington approximation, or random walks

S⌫ = J⌫ =
1

4⇡

Z
I⌫d⌦

dI⌫
ds

= �↵sca
⌫ (I⌫ � J⌫)

In the textbook,
the scattering coefficient is denoted by       .�⌫

j⌫ = ↵sca
⌫

Z
�⌫(⌦,⌦0)I⌫(⌦

0)d⌦0

= ↵sca
⌫

1

4⇡

Z
I⌫d⌦ = ↵sca

⌫ J⌫

!
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Random Walks (in infinite medium)

• Random walks: let’s consider a single photon rather than a beam 
of photons (i.e., ray).

• In an infinite, homogeneous medium, net displacement of the photon 
after N free paths is zero, because the average displacement, being a 
vector, must be zero.

• root mean square net displacement:

The cross terms involve averaging the cosine of the angle between the directions before 
and after scattering, and this vanishes for isotropic scattering and for any scattering with 
front-back symmetry (Thompson or Rayleigh scattering)

R = r1 + r2 + r3 + · · ·+ rN ! hRi = 0

) l⇤ =
p
Nl

l2⇤ ⌘
⌦
R2

↵
=
⌦
r21
↵
+

⌦
r22
↵
+
⌦
r23
↵
+ · · ·+

⌦
r2N

↵

+ 2 hr1 · r2i+ 2 hr1 · r3i+ · · ·
⇡Nl2
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Random Walks (in finite medium)

• In a finite medium, a photon generated somewhere within the 
medium will scatter until it escapes completely.

• For regions of large optical depth, the mean number of scatterings 
to escape is roughly determined by l* ≈ L (the typical size of the 
medium).

• For regions of small optical depth, the probability of scatterings 
within    is                   .

• For any optical thickness, the mean number of scatterings is

l⇤ =
p
Nl ⇡ L ! N ⇡ L2/l2 = L2(n�sca

⌫ )2

) N ⇡ ⌧2 (⌧ � 1)
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Combined Scattering and Absorption
• The transfer equation to the case of combined absorption and 

scattering.

• Source function is an weighted average of the two source functions.
• extinction coefficient:
• optical depth:
• If a matter element is deep inside a medium (i.e., in TE), 

• If the element is isolate in free space, 
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• generalized mean free path:

• probability of a (random walk) step ending in absorption:

• probability for scattering (known as the single-scattering albedo)

• source function: 
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Random Walks with Scattering and Absorption

• In an infinite medium, every photon is eventually absorbed.
• Since a random walk can be terminated with probability                 

at the end of each free path, the mean number of free paths is 
given by

• diffusion length (thermalization length, effective mean path, or 
effective free path): a measure of the net displacement between 
the points of creation and destruction of a typical photon.

mean number of free paths x probability of termination = 1

✏ (= ↵abs/↵ext)
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• In a finite medium:
• The behavior depends on wether its size L is larger or smaller 

than the effective free path     .
• effective optical thickness:

• If effectively thin or translucent                         ,   most photons will 
escape the medium before being destroyed.
luminosity   of thermal source with volume V is

• If effectively thick, we expect                               , and only the 
photons emitted within an effective path length of the boundary 
will have a reasonable chance of escaping before being 
absorbed.

L⌫ = ⇡↵abs
⌫ B⌫Al⇤ = ⇡

p
✏⌫B⌫A (F = ⇡B at surface of the source)
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Approximate Solutions

How to solve the radiative transfer equation:

We will learn two approximations to solve the equation.
• Rosseland approximation
• Eddington approximation

dI⌫
ds

= �↵ext

⌫ (I⌫ � S⌫)

S⌫ = (1� ✏⌫)J⌫ + ✏⌫B⌫ and ✏ = ↵abs

⌫ /↵ext

⌫
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Radiative Diffusion: (1) Rosseland Approximation

• Imagine a plane-parallel medium (in which        depend only on 
depth z).

• “zeroth” approximation: when the point in question is deep in the 
material, all quantities changes slowly on the scale of a mean free 
path                   and the derivative term above is very small.

This is independent of the angle.
• “first” approximation:

⇢, T

dz

✓

ds = dz/ cos ✓

ds =
dz

cos ✓
=

dz

µ
! µ

@I⌫(z, µ)

@z
= �↵ext

⌫ (I⌫ � S⌫)

I⌫(z, µ) = S⌫ � µ

↵ext

⌫

@I⌫
@z

(l⇤ = 1/↵ext

⌫ )

I(0)⌫ (z, µ) ⇡ S(0)
⌫ (T )

) J (0)
⌫ = S(0)

⌫ and I(0)⌫ = S(0)
⌫ = B⌫

I(1)⌫ (z, µ) ⇡ S(0)

⌫ � µ

↵ext

⌫

@I(0)⌫

@z
= B⌫(T )�

µ

↵ext

⌫

@B⌫(T )

@z
! linear in µ
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• net specific flux along z: the angle-independent part of the 
intensity does not contribute to the flux.

• total integrated flux:

let’s define the Rosseland mean absorption coefficient

F⌫(z) =

Z
I(1)⌫ (z, µ) cos ✓d⌦ = 2⇡

Z
+1

�1

I(1)⌫ (z, µ)µdµ

= � 2⇡

↵ext

⌫

@B⌫

@z

Z
+1

�1

µ2dµ

= � 4⇡

3↵ext

⌫

@B⌫(T )

@T

@T

@z

F (z) =

Z 1

0

F⌫(z)d⌫ = �4⇡

3

@T

@z

Z 1

0

1

↵ext

⌫

@B⌫

@T
d⌫

1

↵R
⌘

R1
0

1
↵ext

⌫

@B⌫
@T d⌫

R1
0

@B⌫
@T d⌫
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use

Then, we obtain the Rosseland approximation to radiative flux

which is also called the equation of radiative diffusion.
• The flux equation can be interpreted as a heat conduction with an 

“effective heat conductivity,”                        .
• At which frequencies the Rosseland mean becomes important?

The mean involves a weighted average of              so that frequencies at which the 
extinction coefficient is small (transparent) tend to dominate.
The weighting function                 has a shape similar to that of  the Planck function, but 
it peaks at                             , instead of                             .  

Z 1

0

@B⌫

@T
d⌫ =

@

@T

Z 1

0
B⌫d⌫ =

@
�
�T 4/⇡

�

@T
=

4�T 3

⇡

F (z) = �16�T 3

3↵R

@T

@z
! ��rT

� = 16�T 3/3↵R

@B⌫/@T

1/↵ext

⌫

h⌫
max

= 2.8k
B

Th⌫
max

= 3.8k
B

T
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Radiative Diffusion: (2) Eddition Approximation

• In Eddington approximation, the intensities are assumed to 
approach isotropy, and not necessarily their thermal values.
In the Rosseland approximation, the intensities approach the Planck function at large 
effective depths.

• Near isotropy can be introduced by assuming that the intensity is 
linear in   . (frequency is suppressed for convenience)

• Let us take the first three moments.

Compare with the following equations for the isotropic radiation.

µ

I(⌧, µ) = a(⌧) + b(⌧)µ

mean intensity:

flux:

radiation pressure:

J ⌘ 1

2

Z +1

�1
Idµ = a

H ⌘ 1

2

Z +1

�1
µIdµ =

b

3
! K =

1

3
J

K ⌘ 1

2

Z +1

�1
µ2Idµ =

a

3

Eddington approximation

p =

1

3

u

✓
p ⌘ 1

c

Z
I cos2 ✓d⌦, u(⌦) =

1

c
I

◆
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optical depth and the transfer equation:

Note: source function is independent to    (because                            ).
Integrate the above equation and obtain the following equations.

The two equations can be combined to yield:

Let us define a new optical depth
The radiative equation is then

This equation is sometimes called the radiative diffusion equation. Given the 
temperature structure of the medium,        , the equation can be solved for J. 

d⌧(z) ⌘ �↵extdz, µ
@I

@⌧
= I � S

µ S = (1� ✏)J + ✏B

1

2

Z +1

�1
dµµ

✓
µ
@I

@⌧
= I � S

◆
! @K

@⌧
= H ! 1

3

@J

@⌧
= H

1

2

Z +1

�1
dµ

✓
µ
@I

@⌧
= I � S

◆
! @H

@⌧
= J � S

⌧⇤ ⌘
p
3✏⌧ =

p
3⌧abs(⌧abs + ⌧sca)

@2J

@⌧2⇤
= J �B

1

3

@2J

@⌧2
= J � S ! 1

3

@2J

@⌧2
= ✏(J �B)

B(⌧)
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To solve the second order differential equation, we need two boundary conditions. The 
boundary conditions can be provided in several ways. One way to do is to use two-
stream approximation, in which the entire radiation field is represented by radiation at 
just two angles, i.e.,                  :

The two terms denote the outward and inward intensities. Then, the three moments are

Using                   , we obtain                                                  .

µ = ±µ0

I(⌧, µ) = I+(⌧)�(µ� µ0) + I�(⌧)�(µ+ µ0)

J =
1

2

�
I+ + I�

�

H =
1

2
µ0

�
I+ � I�

�

K =
1

2
µ2
0

�
I+ + I�

�
! we obtain µ0 =

1p
3

in order to satisty K =

1

3

J

H =
1

3

@J

@⌧
I+ = J +

1

3

@J

@⌧
, I� = J � 1

3

@J

@⌧

⌧ = 0 ⌧ = ⌧0

1p
3

@J

@⌧
= J at ⌧ = 0

1p
3

@J

@⌧
= �J at ⌧ = ⌧0

(✓0 = cos

�1 µ0 = 54.74�)

I+(⌧0) = 0 and I�(0) = 0 !

Suppose the medium extends from             to             
and there is no incident radiation. Then, we obtain 
two boundary conditions:

⌧ = 0 ⌧ = ⌧0

I+(⌧0) = 0

I�(0) = 0

z

✓0
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Iteration Method
• Recall

• Let     be the intensity of photons that come directly from the source,     the intensity of 
photons that have been scattered once by dust, and      the intensity after n scatterings. 
Then,

• The intensities      satisfy the equations. 

• Then, the formal solutions are:

I0 I1
In

I(s) =
1X

n=0

In(s)

In

!
I0(⌧) = e�⌧I0(0) +

Z ⌧

0
e�(⌧�⌧ 0)S(⌧ 0)d⌧ 0

In(⌧) = e�⌧In(0) +

Z ⌧

0
e�(⌧�⌧ 0)Sn�1(⌧

0)d⌧ 0

dI0(⌧)

d⌧
= �I0(⌧) + S(⌧)

dIn(⌧)

d⌧
= �In(⌧) + a

Z
�(⌦,⌦0)In�1(⌧,⌦

0)d⌦0

⌘ �In(⌧) + Sn�1(⌧)

dI(s)

ds
= �↵extI(s) + ↵sca

Z
�(⌦,⌦0)I(s,⌦0)d⌦0 + j(s)

or

dI(⌧)

d⌧
= �I(⌧) + a

Z
�(⌦,⌦0

)I(⌧,⌦0
)d⌦0

+ S(⌧)
✓
d⌧ ⌘ ↵extds, S(⌧) ⌘ j(⌧)

↵ext

◆

✓
Sn�1(⌧) ⌘ a

Z
�(⌦,⌦0)In�1(⌧,⌦

0)d⌦0
◆
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Approximation: (1) application to the edge-on galaxies
The solution can be further simplified by assuming that

Then, the infinite series becomes

Kylafis & Bahcall (1987) and Xilouris et al. (1997, 1998, 1999) applied this 
approximation to model the dust radiative transfer process in the edge-on galaxies.872 E.M. Xilouris et al.: Are spiral galaxies optically thin or thick?

Fig. 1. I-band observations of the galaxies NGC 4013, IC 2531,
UGC 1082, NGC 5529 and NGC 5907 (top to bottom).

cylinder with radius Rmax = 3 max(hs, hd) and half height of
6 max(zs, Re), so that practically all the galactic light as well
as the dust are included. A Henyey-Greenstein phase function
has been used for the scattering of the dust (Henyey & Green-
stein 1941). The values for the anisotropy parameter g and the
albedo ! have been taken from Bruzual et al. (1988). Our task
has been to find those values of the parameters in Eqs. (1) - (6)
which create images of the model galaxies as close as possible
to the images of the observed galaxies. For the model fitting
techniques that we use, the reader is referred to Papers I and II.

4. Results

In Tables 2 through 6, we give the parameters of the best fit
models to the observed data along with their 95% confidence
intervals for NGC 4013, IC 2531, UGC 1082, NGC 5529 and
NGC 5907 respectively (for Table 7 describing NGC 891 see
Sect. 5). Using the values of the parameters that describe the
stellar and dust distributions of the galaxies, given in the above
tables, we have created model images and have compared them
with the observed images (see Figs. 1 and 2). In Fig. 1 the I-
band observations of all five galaxies are presented (NGC 4013,
IC 2531, UGC 1082, NGC 5529 andNGC 5907 from top to bot-
tom). In Fig. 2 we show the model images of these galaxies in
the I-band with the same scale and sequence as in Fig. 1 so that
a direct comparison can be made between the two figures. In
Figs. 3–7 we give a more detailed comparison between model
and observation for each galaxy and each filter by showing ver-
tical cuts along the minor axis. For this demonstration we use

Fig. 2. I-band models of the galaxies NGC 4013, IC 2531, UGC 1082,
NGC 5529 and NGC 5907 (top to bottom).

the ‘folded’ (around the minor axis) and photometrically aver-
aged images of the galaxies, which are also the images that were
used for the model fit (see Paper I). In each plot, the horizontal
axis represents the offset (in kpc) along the vertical direction,
with zero lying on the major axis of the disk. The vertical axis
gives the surface brightness (inmag/arcsec2). Real data are indi-
cated by stars, while the model is shown as a solid line for each
profile. The six profiles in each plot are vertical cuts at six dif-
ferent distances along the major axis. The cuts are at distances
0, 0.5hI

s, 1hI
s, 1.5hI

s, 2hI
s and 2.5hI

s and are plotted from bot-
tom to top, with hI

s being the scalelength of the stars as derived
from the I-band modelling. The magnitude scale corresponds
to the lower profile of each set, the other profiles are shifted
upwards (in brightness) by 2, 4, 6, 8 and 10 magnitudes respec-
tively. Profiles between 0 and 1.5hI

s correspond to brightness
averaged over 4

00 (7.500 for NGC 5907) parallel to the major
axis, while profiles at 2hI

s and 2.5hI
s are averaged over 800 (15

00

for NGC 5907) along the same direction. This was done to re-
duce as much as possible the local clumpiness that may exist in
particular areas of the galaxy. In these plots, only the data above
the limiting sigma level (⇠ 3 sigma of the local sky) that were
used for the fit are plotted, while the foreground stars have been
removed.

One can clearly see a good agreement between model and
observation despite the small deviations in some places. It is
worth remembering here that a global fit was done to the ob-
served galaxy’s image and the derived set of parameters (Ta-
bles 2–6) gives the best galaxy image as a whole.

In
In�1

⇡ I1
I0

(n � 2)

Xilouris et al. (1999)

In ⇡ I0

1X

n=0

✓
I1
I0

◆n

=
I0

1� I1/I0
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Approximation: (2) solution for the forward scattering
• Assume the very strong forward-scattering

• The iterative solutions are:

I(0)

⌧0

S = 0

I0(⌧) = e�⌧I0(0)

! S0(⌧) = aI0(⌧) = ae�⌧I0(0)

I1(⌧) = e�⌧

Z ⌧

0
e⌧

0
S0(⌧

0)d⌧ 0 = (a⌧)e�⌧I0(0)

! S1(⌧) = aI1(⌧) = (a2⌧)e�⌧I0(0)

I2(⌧) = e�⌧

Z ⌧

0
e⌧

0
S1(⌧

0)d⌧ 0 =
(a⌧)2

2
I0(0)

! S2(⌧) = aI2(⌧) = (a3⌧2)e�⌧I0(0)

I3(⌧) = e�⌧

Z ⌧

0
e⌧

0
S2(⌧

0)d⌧ 0 =
(a⌧)3

3⇥ 2
I0(0)

...

! Sn�1(⌧) = aIn�1(⌧) = (an⌧n�1)e�⌧I0(0)

In(⌧) = e�⌧

Z ⌧

0
e⌧

0
Sn�1(⌧

0)d⌧ 0 =
(a⌧)n

n!
I0(0)

�(⌦,⌦0) = �(⌦0 � ⌦)

! Sn�1(⌧) = aIn�1(⌧)

The final solutions are:
Idirec(⌧) = e�⌧I(0)

Iscatt(⌧) =
1X

n=1

In(⌧) =
1X

n=1

(a⌧)n

n!
e�⌧I(0)

= (ea⌧ � 1)e�⌧I(0)

⇡ a⌧e�⌧I(0) if a⌧ ⌧ 1

⇡ a⌧I(0) if ⌧ ⌧ 1

Itot(⌧) = Idirec(⌧) + Iscatt(⌧)

= e�(1�a)⌧I(0)

= e�⌧absI(0)
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