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The Einstein Coefficients

 Consider a system with two discrete energy levels (£, E2) and
degeneracies (g1, 92) . Let (n1,n2) be the number densities of
atoms in levels (1, 2).

level 2: E,,¢g,, N9

A A
AE=hv, absorption emission
Y ¥ level 1: £, g, N1

Spontaneous Emission from level 2 to level 1:

The Einstein A-coefficient A21 is the transition probability per unit
time for spontaneous emission.




Absorption from level 1 to level 2 occurs in the presence of
photons of energy hy, .

» The absorption probability per unit time is proportional to the
density of photons (or to the mean intensity) at frequency vy .

* |In general, the energy difference between the two levels have
finite width which can be described by a line profile function ¢(v) .

Av

o(v)

- The Einstein B-coefficient Bi: is defined by
Bi»J = transition probability per unit time for absorptioon
where J = [~ J,¢(v)dv




Stimulated emission from level 2 to level 1:

- Another Einstein B-coefficient is defined by
By, J = transition probability per unit time for stimulated emission.

 Einstein found that to derive Planck’s law another process was
required that was proportional to radiation field and caused

emission of a photon.

» The stimulated emission is precisely coherent (same direction and
frequency, etc) with the photon that induced the emission.

Note:

- Be aware that the energy density is often used instead of intensity
to define the Einstein B-coefficients.




Relations between Einstein Coefficients

In TE, total absorption rate = total emission rate:

n1BiaJ = noAsy + noBayJ
As1 /B2y
(n1/n9)(B12/B21) — 1

Populations of the atomic states follow the Boltzmann distribution.

— J =

nt_ 91 exp(—F1/ksT) . exp(hvo/ksT).

19 g2 GXP(—EQ/ ]‘CBT) g2

Therefore,
As1/Boq

(91312/92321) exp(huo/kBT) — 1

J =

In TE, J., = B, for all temperatures. We must have the following

Einsteln relations:
g1B12 = g2 B2

2h3
-2

Ao = Bay




: : - . )
Einstein relations: 91B1o = g2 Bo1

2h3
Aoy = 2 Bay

\- J

» |f we can determine any one of the coefficients, these relations
allow us to determine the other two.

+ These connect atomic properties (A21, B21, B12) and have no
reference to the temperature. Thus, the relations must hold
whether or not the atoms are in TE.

+ |f the relations were only for TE, the relations would contain the dependence on T.
+ Without stimulated emission, Einstein could not get Planck’s law,
but only Wien’s law.

+ When hv > kg1’ (Wien’s limit), level 2 is very sparsely populated relative to
level 1. Then, stimulated emission is unimportant compared to absorption.




Radiative Transfer Equation in terms of Einstein Coefficients

Emission coefficient:

» assumption: the line profile function of the emitted radiation is the
same profile as for the absorption ¢(v).

- energy emitted in volume dV, solid angle df?, frequency range dv,
and time dt:

G,dVdQdvdt = (hv/4AT)ns Agy dV dQe(v)dydt

Here, note that each atom emits an energy v distributed over
solid angle 4r.

» Then, the emission coefficient is given by

4 )

hv

jz/ — En2A21¢(V)

. J




Absorption coefficient:

» energy absorbed out of a beam in frequency range dv, solid
angle d€}, time dt, and volume dV

oy, 1, dV dtdQdv = (hv/4m)ng B1o1,dV dtdQ¢(v)dy

» Then, the absorption coefficient (uncorrected for stimulated
emission) is given by -

Q, = 4—nlB1z¢(V)
T

- What about the stimulated emission? It is proportional to the
intensity, in close analogy to the absorption process. Thus, the
stimulated emission can be treated as negative absorption. The
absorption coefficient, corrected for stimulate emission, is

4 )

hv
a, = 4—¢(V) (n1B1a — naBoy)
s
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Source function:

B no A
SV:]__ 24121

oy, Nn1Bia —nobBoy

 Using the Einstein relations, the absorption coefficient and source
function can be written

h
&, — —anBlg (1 gan)
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1) — generalized Kirchhoff’s law
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Thermal Emission (LTE)

» |f the matter is in TE with itself (but not necessarily with the
radiation), we have the Boltzmann distribution. The matter is said
to be in LTE.

ni g1

— = Z—exp (hv/krT
o p (hv/kgT)

 In LTE, we obtain the absorption coefficient and the Kirchhoft’s

law:
h h
QU = ﬁmBm {1 — €xp ( kBVTﬂ o(v)
4 )
S, = B,(T) — Kirchhoff’s law in LTE
. J

« The Kirchhoff’s law holds even in LTE condition.




Normal & Inverted Populations

Normal populations:

+ InLTE, 7201 _ ( hV><1 o m2
kBl g1 92

» The normal populations is usually satisfied even when the
material is out of thermal equilibrium.

Inverted populations: m1 _ 72
g1 92

* In this case, the absorption coefficient is negative and the
iIntensity increases along a ray.

« Such a system is said to be a maser (microwave amplification by
stimulated emission of radiation; also laser for light...).

» The amplification can be very large. A negative optical depth of
-100 leads to an amplification by a factor of ¢'°° = 10%°.

11



Scattering Effects: Pure Scattering

Assumptions

Isotropic scattering: scattered equally into equal solid angles

coherent scattering (elastic or monochromatic scattering): the total amount of radiation
scattered per unit frequency is equal to the total amount absorbed in the same
frequency range.

Thompson scattering (scattering from non-relativistic electrons) is nearly coherent.

scattering coefficient = S / ®,(Q, Q)N (Q)NdY
In the textbook,
the scattering coefficient is denoted by ., . _ ascai /] dQ) — o5 T
1% T v _ v 1%
source function ¢ _ 7 _ 1 [;q
v v 47T v

radiative transfer equation d7, en
d - % (L/ o J,/)
S

This is an integro-differential equation, and cannot be solved by the formal solution.

— Rosseland approximation, Eddington approximation, or random walks
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Random Walks (in infinite medium)

- Random walks: let’s consider a single photon rather than a beam
of photons (i.e., ray).

 In an infinite, homogeneous medium, net displacement of the photon
after N free paths is zero, because the average displacement, being a

vector, must be zero.
R=ri4+ro+r3+---+ry — (R)=0

* root mean square net displacement:
2= (R2) = (13) + (x3) + (1) + - + ()
+2(ry-ro) +2(ry-r3) +---
~NI? « Note (r2)~12, (r;-r;)=0 (i#j)

-1, = VNI

The cross terms involve averaging the cosine of the angle between the directions before
and after scattering, and this vanishes for isotropic scattering and for any scattering with

front-back symmetry (Thompson or Rayleigh scattering)
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Random Walks (in finite medium)

* In a finite medium, a photon generated somewhere within the
medium will scatter until it escapes completely.

 For regions of large optical depth, the mean number of scatterings
to escape is roughly determined by I~ L (the typical size of the

medium).
) l. =VNl~L — N~ L*/I*=L?(no5™)?
' N=~71* (1>1)

» For regions of small optical depth, the probability of scatterings

within7is 1 —e™ 7 = 7.
' N=71 (1<1)

» For any optical thickness, the mean number of scatterings is

N=7°+7 or N ~max(r, 7°)
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Combined Scattering and Absorption

The transfer equation to the case of combined absorption and
scattering.

dl,
E — _aibS(]V o B,/) . als/ca(ly B (]1/)
= —(a® +a¥*)(I, — S,) = —aZ(I, — S,)
abSB sca g
where 5, = Oy By T 0y and a®' = " 4 o5

Oz%bs + azs/ca v

Source function is an weighted average of the two source functions.
extinction coefficient: oS = a2 + o5

optical depth: dr, = aS'ds

If a matter element is deep inside a medium (i.e., in TE),

J, =B, — S, =8B,

If the element is isolate in free space, J, =0 — S, = a**B, /o
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generalized mean free path:
l, = (P 4 qseay 1

probability of a (random walk) step ending in absorption:
€, = % /"

probability for scattering (known as the single-scattering albedo)
a, =1 —¢, = a’?/a
source function:

S, =e,B,+(1—¢,)J,
=(1—a,)B, +a,J,
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Random Walks with Scattering and Absorption

» |In an infinite medium, every photon is eventually absorbed.

« Since a random walk can be terminated with probability e (= a*"®/a®)
at the end of each free path, the mean number of free paths is

given by
mean number of free paths x probability of termination = 1

Ne=1 — N =1/c¢

- diffusion length (thermalization length, effective mean path, or
effective free path): a measure of the net displacement between
the points of creation and destruction of a typical photon.

I, ~ VNI =1/\/e
(agh) ™1\ agt Jazb:

~ (Ozibs()éi}(t)_l/z

2
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In a finite medium:

The behavior depends on wether its size L is larger or smaller
than the effective free path . .

effective optical thickness: 7. = L/l. & \/Tabs(Tabs + Tsca) = /Tabs Text

ext

__ _abs __ _.sca _
Where Tabs p— OéV L, Tsca p— OKV L’ Text p— Oé]/

If effectively thin or translucent (7« < 1, L <), most photons will
escape the medium before being destroyed.

luminosity of thermal source with volume V is
L, =475,V =4na, B,V (1. < 1)

 |f effectively thick, we expect I, — B,, S, — B,, and only the
photons emitted within an effective path length of the boundary
will have a reasonable chance of escaping before being
absorbed.

L, = W&ibSBVAl* — T /GVBVA (F' = wB at surface of the source)
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Approximate Solutions

How to solve the radiative transfer equation:

dl,
— —leeXt(I,/ L SU)

ds v
S, =(1—¢,)J,+¢,B, and e = aibs/alef{t
We will learn two approximations to solve the equation.

* Rosseland approximation
» Eddington approximation

19



Radiative Diffusion: (1) Rosseland Approximation

 Imagine a plane-parallel medium (in which p, T depend only on
depth 2).

A

dz dz ol,(z, 1) .
ds = = - = —a (I, — S,
"7 Cosh i S o )
p or, Yy
1, =95, — z|/ds = dz/ cosf

» “zeroth” approximation: when the point in question is deep in the
material, all guantities changes slowly on the scale of a mean free

path (. = 1/a;*") and the derivative term above is very small.
10 (z, ) = SY(T)
This is independent of the angle. .. J\” = S{” and IV = S = B,

» “first” approximation:

p OB, (T)

7(1) ~ g(0) _ — B.(T) —
o (z,1) = Sy (T) 02

> linear in w
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* net specific flux along z: the angle-independent part of the
intensity does not contribute to the flux.

+1
Fy(z) = / 10 (2, 1) cos dQ = 27 / IO (2, ) udpe

1
o 0B, [T}
- _ / wAdu

C\fle/Xt aZ 1
 4x 9B,(T) 9T
Jasxt 9T 0z

- total integrated flux: _ / ~ _ AroT /OO 1 9B,
F(z) : F,(z)dv 39z ), st or dv

let’s define the Rosseland mean absorption coefficient

1 0B,
1 _fO asxt 9T dv

= 7 [ 0B,
R Jo G v




use

dv=— | Bydv=
aT "~ 9T J, g oT T

/OO 0B, o [ 0 (0T4/7T) B 4oT3
0

Then, we obtain the Rosseland approximation to radiative flux

160713 OT
F(z)=— » —x V1
(Z) SOéR 0z X

which is also called the equation of radiative diffusion.

The flux equation can be interpreted as a heat conduction with an
“effective heat conductivity,” x = 1607 /3ax.

At which frequencies the Rosseland mean becomes important?

ext

The mean involves a weighted average of 1/a; " so that frequencies at which the
extinction coefficient is small (transparent) tend to dominate.

The weighting function 0B, /0T has a shape similar to that of the Planck function, but
it peaks at hvpmax = 3.8ksT, instead of hvpax = 2.8kpT.
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Radiative Diffusion: (2) Eddition Approximation

* |In Eddington approximation, the intensities are assumed to
approach isotropy, and not necessarily their thermal values.

In the Rosseland approximation, the intensities approach the Planck function at large
effective depths.

* Near isotropy can be introduced by assuming that the intensity is
linear in 1. (frequency is suppressed for convenience)

I(t,p) = a(T) + b(T)u
e Let us take the first three moments.

+1
mean intensity: J = % / Idp = a Eddington approximation

—1
L 1 ]_J
flux: H / uldy = - — [K = —J
1 3 3
- +1
radiation pressure: / T =
—1
Compare with the following equations for the isotropic radiation.

1 1 1
p=-u (p = — /10082 0d2, u(2) = —I>
3 c c

o= N =

|
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optical depth and the transfer equation: () = _gextg;. M? 7.
.

Note: source function is independent to (1 (because S = (1 —¢)J + €B).

Integrate the above equation and obtain the following equations.

1 [+t oI OH

1 [ oI OK 10J
2 /_1 arp ('uﬁT g S) ~ oT H 30T

The two equations can be combined to yield:

2 2
lsz—S %[18]260]—39

3 72 3 072

Let us define a new optical depth 7. = V3eT = \/37ubs (Tabs + Tsca)

The radiative equation is then [ 52 7 j
=J—-B

2
0T

This equation is sometimes called the radiative diffusion equation. Given the
temperature structure of the medium, B(7), the equation can be solved for J.




To solve the second order differential equation, we need two boundary conditions. The
boundary conditions can be provided in several ways. One way to do is to use two-
stream approximation, in which the entire radiation field is represented by radiation at
just two angles, i.e., 1t = Lo :

I(t,p) =TT (7)8(p — po) + I (7)0(pe + po)

The two terms denote the outward and inward intensities. Then, the three moments are

J:%(I+—|—1_>

1 1 1
H = - JT — ) — we obtain — —— in order to satisty K = —J
5o ( ) o = 7 y ;
K — %Mg ([+ 4 I_) (0 = cos™* pg = 54.74°)
_ 10J . 10J 10
Using H=-— ,weobtain [T = T =J-==.
9 30T [ S+ 301’ J 3 0T

Suppose the medium extends from =0 to 7 =19
and there is no incident radiation. Then, we obtain

two boundary conditions: 1 a7 ~
ﬁa— = J at 7=0
+ o _ o T
It (19)=0 and I~ (0)=0 — {87

=—J at 7T=19

V30T y
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lteration Method

Recall dI(s)

— —a®1(s) + @ [ Q) 1(5. D) + ()

or d;g_T) _ —I(T) 4 CL/(I)(Q, Q/)I(T, Q/)dﬂl e S(T) (dT = a®™'(s, S(1) = i(ezz)

Let I, be the intensity of photons that come directly from the source, 1 the intensity of
photons that have been scattered once by dust, and [, the intensity after n scatterings.

Then, >
= In(s)
n=0

The intensities I,, satisfy the equations.

d@f) = —1o(7) +5(7)
dln(T) _ / / /
w_._—h@)+a/®GLQﬂﬁ4hJUﬂl

= —I,(7) + Sp_1(7) (sn_l(T) = a/CI)(Q,Q’)In_l(T, Q’)dQ’>

Then, the formal solutions are:
I()( — 6_7-[0 —|—

%
I,(r)=¢e¢"I1,(0) +

—(7‘ T )S

e~ TS, (7)dr’

c\c\
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Approximation: (1) application to the edge-on galaxies

The solution can be further simplified by assuming that

L, L
[n—l - IO

— (1\" Iy
1, ~ 1 — —
0;%(&) 1—1L/I,

Kylafis & Bahcall (1987) and Xilouris et al. (1997, 1998, 1999) applied this
approximation to model the dust radiative transfer process in the edge-on galaxies.

(n>2)

Then, the infinite series becomes

I-band observations I-band models
NGC 4013

= =

IC 2531 . : IC 2531

NGC 4013

UGC 1082 UGC 1082

NGC 5529 NGC 5529

*
NGC 590?. NGC 5207
e

=
| ¢

Xilouris et al. (1999)
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Approximation: (2) solution for the forward scattering

- Assume the very strong forward-scattering

B(Q, Q) = 5(Q — Q)
— Sn_l(T) — a[n_l(T)

 The iterative solutions are:

Io(r) = e~ I (0)
L So(r) = aly(7) = ae~"I(0)
L(r) =" /O " So()dr = (ar)e="Io(0)
S Sy(r) = aly(7) = (a®r)e T Io(0)
L(r) =e T /O LTSy () dr = (“;)210(0)

— So(7) = alx(7) = (a’7?)e "1I(0)

Is(t) =¢"7 /OT e” So(7)dr! = éa;:)z Iy(0)

1(0)

4 . .
The final solutions are:
IdireC(T) _ 6—7'[(0)

Iscatt(T) _ Z In(T) _ Z (aT)ne_TI(())

n!

n=1
= ("7 —1)e”"1(0)
~are TI1(0) if aTr <1
~ atl(0) if T<1

ItOt(T) _ IdireC(T) + Iscatt(T)
= e~ (1797](0)

= e~ "= [(0)
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