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Terms for ns and np subshells

e Draine, Chap. 4

Table 4.1 Terms for ns and np Subshells

Ground Terms

configuration  (in order of increasing energy) Examples
..ns' ?S1/2 HI Hell, CIV, NV, O VI
...ns° 'So Hel, CIII, NIV,O0V
..np* “PPg.s/ CIL, NIIL, OIV
..np° *Po.12, D2, 'So CI, NII, OIIl, Ne V, S
..np° *S5/2»°Dssas/2 s ‘Priasn  NLOILNelV, SIL ArIV
..np" *Pa1o, ‘Do, 'So OI, Nelll, MgV, Ar
..np° P51 NeIl, Nalll, Mg IV, ArIV
..np° 'So Ne I, Nall, Mg III, ArIII




e Configurations

Terms

Fine Structure (Spin-Orbit Interaction)

Hyperfine Structure (Interaction with Nuclear Spin)

e /eeman Effect:

When a static magnetic field B is applied, each of the fine-structure levels L
splits into 2.J41 energy levels, with energies depending on the value of J - Bg. The
energy splittings are small, of order ug By ~ 5.78 x 1071°(By/ uG) eV, where
up = eh/2mec is the Bohr magneton. Interstellar magnetic field strengths are of
order 1 — 100 uG, and therefore the Zeeman shifts are too small to be measured for
transitions in the sub-mm or shortward (hv 2 104 eV).

However, 1n the case of atomic hydrogen, the hyperfine splitting gives rise to the
21-cm transition, with an energy hv = 5.9 X 10~ % eV, and, therefore, an applied
field of order 10 uG shifts the frequency by about one part in 10%. This shift is
much smaller than the frequency shift v/c ~ 107° due to a radial velocity of a
few kms™ ', and it would be nearly impossible to detect, except that it leads to a
shift in frequency between the two circular polarization modes. The Zeeman effect
in HI21-cm can therefore be detected by taking the difference of the two circular
polarization signals. This technique has been used to measure the magnetic field
strength in a number of H I regions.




2.9 Collisional Excitation

1. Under the conditions of very low density and weak radiation fields,

(a)

The vast majority of the atoms reside in the ground state.

collisional excitation timescale > radiative decay time scale
This condition will remain true even if the excited state has a radiative lifetime of

several second. This is frequently the case for the forbidden transitions observed in
lonized astrophysical plasmas.

flux of an emission line o flux number of collisions

o< product of the number densities of the two colliding species by the probability
that a collision will produce a collisional excitation

If the energy gap between the ground state and the excited state, E17, is much larger
than the mean energy of the colliding species ~ I', then, because there are few
very energetic collisions, relatively few collisional excitations can occur. Therefore,
the resulting emission line will be very much weaker than when Eq1o < KT

—> This gives us the possibility of measuring temperature from the relative strengths
of lines coming from excited levels at different energies above the ground state.




2. At high enough densities,
(a) The collisional timescales are short.

(b) The population in any upper level is set by the balance between collisional excita-
tion, and the collisional deexcitation out of these levels, and are governed by the
Boltzmann equlibrium.

3. At intermediate densities,

(a) The collisional rates and the radiative decay rates are compatible.

(b) The intensity of an emission line is determined by both the temperature and the
density.

(c) If the temperature is known, the density can be determined from the intensity ratio
of two such lines.




4. Collisional Rate (Two Level Atom)

(a) The collisional cross section is in general varying approximately inversely as the
impact energy (because of the focusing effect of the Coulomb force).

hR | Q 1
o12 (v) = (wa%) ( 2) 12 ¢m? for §m§v2 > F1o

Im2v2 | g1
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where, ag = 5 = 5.12 % 1013 c¢m, Bohr radius
mnee€
4
R = Mhe® _ 109, 737 cm ™1, Rydberg constant
Arh3

(b) The collision strength €215 is a function of electron velocity (or energy) but is often
approximately constant near the threshold, g1 is the statistical weight of the lower
level.




(c) Advantage of using the collision strength

I. It removes the primary energy dependence for most atomic transitions.

il. The symmetry between the upper and the lower states.

Using the principle of detailed balance, which states that in thermodynamic equi-
librium each microscopic process is balanced by its inverse,

neniv1012 (v1) f (v1) dvy = nengvaony (v2) f (v2) dvo,

where v1 and vy are related by %mev% — %mev%—l—Elg, and using the Boltzman
equation of thermodynamic equilibrium,

ny  go Eq
(22
n1T g1 kT

we derive the following relation

2 2
g1v1o12 (v1) = gav5021 (v2),
and the symmetry of the collision strength between levels

(210 = Qp1.




(d) Collisional excitation and de-excitation rates

If €251 is a constant, the total collisional de-excitation rate per unit volume per unit
time Is

R>1 = nenogoq

o
= neny | voa (v) f (v) do
1/2
2 kA Q2
= NeN? <2> T_l/zﬂ.
me g2
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T g2
and the collisional excitation rate per unit volume per unit time is R12 = neniqio,

where

q12 = /voo vo1o (v) f (v) dv

1/2
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(e) Quantum mechanical sum rule for collision strengths for the case where one term
consists of a single level and the second consists of a multiplet, if either S = 0 or

L =0,
o B (2J" 4+ 1) o
(SLJ,S’L’J/) T (25/ i 1) (2L/ i 1) (SL,S/L’)

Here, (2J' 4 1) is the statistical weight of an individual level (or term) in the

multiplet, and (25’ 4+ 1) (2L’ + 1) is the statistical weight of the multiplet. We
can regard the collision strength as “shared” amongst these levels in proportion to
the statistical weights of the individual levels (g5 = 2J + 1).

I. C-like ions (1322322102 — 1522522p2, same electron configurations) — forbid-
den or intercombination transitions.

ground states (triplet) - 3Py 3 P, 3P, =1/9:3/9:5/9
excited states (singlets) — 1D5,1.5;

il. Li-like ions (182281 — 1322p1) — resonance transitions
ground state (single) — 251/2
excited states (doublet) — 2P3/2 2 P1jp=2/3:1/3




(f) Limiting Cases

I. In the low density limit, the collisional rate between atoms and electrons is much

slower than the radiative deexcitation rate of the excited level. Thus, we can
balance the collisional feeding into level 2 by the rate of radiative transitions

back down to level 1. The collision rate is

R1o = Ao1no,
~ neniqi2
no = ,
An1

where Asq is the Einstein coefficient for spontaneous emission. Emission line flux
IS

Fo1 = E12A1n0 = E1o R0

o 8.62942 x 10° [ Q15 ( E12) 3 1
— Non, exp| ——=] erg cm S
_ 15 F1»
~ xnZBE,T1/2 <> exp <——)
g1 k'l

For low temperatures, the exponential term dominates. At high temperature, the
T-1/2 term controls the cooling rate.
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il. In high-density limt, the level populations are set by the Boltzman equilibrium,

Fp1 = E12A2110

go Eqo
— n1FE15A>1== ex (——)
110 2191 P T
go Eqo
~ YyNelF 15 A>1== ex (——)
xNeF19 2191 o T

ii. Critical density defined as the density where the radiative depopulation rate
matches the collisional deexcitation for the excited state,

Arino = Rpy

Az1mp = neny AL s
€ T1/2 o
ApigoTV2
NeAviy = cm
crit 5912

At around this density, the line emissivity plotted in log-scale changes slope from
+2 to +1.
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5. The Three-Level Atom (Line diagnostics)

(a) Let C;; be the collision rate (C;; = negq;; s~1) between any two levels. The
equations of statistical equilibrium for a three level atom are

N1C13 + N2Cr3 = N3 (C31 + C3p + A3z + A3yp),
N1C12 + N3(C32 + Azp) = Na (Co3 + Co1 + A»y),
N1+ No + N3 = 1.
(b) Electron temperature

I. Low-Density Limit; Eyjo ~ E3

ii. In this limit, C31 ~ C3p ~ 0. Also, because of the increasing threshold energies
to excite each level, N3 << Ny < Nj so that the equations are reduced to

Na — N1C13
3 p—
(A3 + A31)
N.C
N, — N1¢12
Ao

If we now form the line intensity ratio for the 3 — 2 and 2 — 1 transitions, we
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have
I3 E23N3A3
Fo1  E12N2A»

_ FE»3A372C13
F12(A3z2 + A31)C12
_ E23A32q13
E12A31912
~ E»3A435813 ( E23)
— exp| —— .
FE12A318215 KT

provided that A3s is very much less than A3zj.
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Temperature

Use two levels with different excitation energy.

O Il
| S ool [OIll]
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(c) lons in which Ex3 < Eqp

I. In low density limit

N1C13 = N3A3jg,
N1C12 = NoA»sg,

P _ BnAqiNs _ EnCis Qa1 <_@> L
Fo1  Ep1A21Np  Ep1C12 Qo kT Q21 9o

using the quantum-mechanical sum rule for collision strengths.

ii. In high density limit, the upper levels are populated according to their Bolzmann
ratios,

F31 _ E31431N3  As193
Fo1  E21A21N>  Azigo
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Density

Choose atom with two levels with almost same excitation energy.
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[Einstein Coefficients and Oscillator Strengths]

e Recall resonance scattering cross-section and the Einstein relations:

71'62 }//47T2 nglu — guBul E —E
0,(V)= > 2 2hv’ where v, = ——="(=V,)
mc (V—VO) +(’}//47L-) Aul = ZZM Bul h

C

* The Einstein (absorption) B coefficient associated with a classical oscillator can be defined in
terms of the total energy extracted from a beam of radiation.

? 2 2
= e ) hv . 471_ ¢
j() Glu (V)dv == Blculassmal lu 3 Blculassmal _

mc 4r hv, mc

It is convenient to define the absorption and emission oscillator strengths ( f,, and f,,) by the
formulae:

B 41’ e?

hv, mc

471 e?
B =
Ju “hv me

ul

__ pclassical
Bl =B lu ﬁ

f., (note thatv , =-v, <0and f, <0)

u u

The oscillator strength (or f value) is the factor which corrects the classical result. The quantum
mechanical process can be interpreted as being due to a (fractional) number f of equivalent
classical electron oscillators of the same frequency.




e In quantum mechanics, the absorption oscillator strength 1s given by

2m
ﬁu — 3h2gl€2 (Eu _El)2|dlu

2

d, = <¢u el’| ¢z>

where the sum 1s over all substates of the upper and lower levels.

We also have the following relations.

2
te
glﬁu — _guﬁtl G(V): me ﬁu
8m2ev? 8126’V e
gu ul = 3 . guf;tl = 3 : glﬁu = _ﬁuq)(v)
mc mc mc

o Thomas-Reiche-Kuhn sum rule

2 f... = N = total number of electrons in the atom

n

Here, the summation is over all states of the atom. Where there 1s a close shell and a smaller number
q of electrons outside the closed shells that are involved in a more limited set of transitions, we also
have

2 fu =4

where the sum is now only over those states involve transitions of these outer electrons.

We note that f ~ 1 for strong allowed transitions.




[Line Broadening Mechanisms]

e Atomic levels are not infinitely sharp, nor are the lines connecting them.
(1) Doppler Broadening
(2) Natural Broadening
(3) Collisional Broadening

Doppler Broadening

Perhaps the simplest mechanism for line broadening is the Doppler effect.
An atom is in thermal motion, so that the frequency of emission or
absorption in its own frame corresponds to a different frequency for an
observer. Each atom has its own Doppler shift, so that the net effect 1s to
spread the line out, but not to change its total strength.

The change in frequency associated with an atom with velocity compo-
nent v, along the line of sight (say, z axis) is, to lowest order in v/c, given
by Eq. (4.12)

Vol,
y—yy=
c
Y - : > v=v,(1+BcosB)
v, 7(1-Bcos@) ’

Here v, is the rest-frame frequency.
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The number of atoms having velocities

in the range v, to v, + dp, is proportional to the Maxwelhan distribution

m,o;
eXp| — 51T dv,

where m, is the mass of an atom. From the above we have the relations

c(v—ry)
v, = ,
Yo
cd
dv, = ety
Yo

Therefore, the strength of the emission in the frequency range » to v +dv 18
proportional to

exp . n‘lc;'cz(l’h_'pﬁ)2 1 dV
202k T ’




Then, the profile function 1s

¢(v)= L momniam

Avp Ve

Here the Doppler width Avp, 1s defined by

The constant (Av, V7 )~ ! in the formula for ¢(») is determined by the
normalization condition [¢(r)dv=1 under the (reasonable) assumption

that Av,<w», The line-center cross section for each atom, neglecting
stimulated emission, 1s therefore

hv,

1 hv
Upo=Blzz‘7;¢(Vo)= :

B
AvD\/; 4 12

e’ 1

—f
me =12 Av,Vw
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for the case of Doppler broadening. Numerically this is

0, =116X10""A)VA/T f,, cm?,

where A, is in 4, T in K, and A is the atomic weight for the atom.

In addition to thermal motions there can also be turbulent velocities
associated with macroscopic velocity fields. When the scale of the turbu-
lence i1s small in comparison with a mean free path (called microturbulence)
these motions are often accounted for by an effective Doppler width

1/2
Av, = VO( kT +£2) :

c\ m,

where £ is a root mean-square measure of the turbulent velocities. This
assumes that the turbulent velocities also have a Gaussian distribution.
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Natural Broadening

A certain width to the atomic level is implied by the uncertainty principle,
namely, that the spread in energy AE and the duration A in the state must
satisfy AE Ar~h. We note that the spontaneous decay of an atomic state n
proceeds at a rate

Y= 2 Arm”
n

where the sum is over all states n” of lower energy. If radiation 1s present,
we should add the induced rates to this. The coefficient of the wave
function of state n, therefore, is of the form e ~*/? and leads to a decay of
the electric field by the same factor. (The energy then decays proportional
to e Y.) Therefore, we have an emitted spectrum determined by the
decaying sinusoid type of electric field, as given in §2.3 and Fig. 2.3. Thus
the profile is of the form

y/47* |
(v —vo)’ +(y/47)’

This 1s called a Lorentz (or natural) profile.

o(v)=

23



Actually, the above result applies to cases in which only the upper state
is broadened (e.g., transitions to the ground state). If both the upper and

lower state are broadened, then the appropriate definition for vy is

Y=Yu+719

where v, and v, are the widths of the upper and lower states involved 1n the

transition. Thus, for example, we can have a weak but broad line if the
lower state is broadened substantially.
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Collisional Broadening

The Lorentz profile applies even more generally to certain types of
collisional broadening mechanisms. For example, if the atom suffers colli-
sions with other particles while it is emitting, the phase of the emtted
radiation can be altered suddenly (see Fig. 10.3). If the phase changes
completely randomly at the collision times, then information about the
emitting frequencies is lost. If the collisions occur with frequency »., that
is, each atom experiences »_, collisions per unit time on the average, then
the profile is (see Problem 10.7).

T/4w2
(v —vy)* + (T /4m)*

$(v)=

Lorentz or Cauchy distribution

where

F=y+2p_,

AWAWAWA
\VAAVERVARN

. /\ /\ /\ /\ ’
Figure 10.3 Time-dependence of the electric ﬁeld of emitted radiation which is

(a) purely sinusoidal and (b) subject to random phase interruptions by atomuc
collisions.
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Combined Doppler and Lorentz Profiles

Quite often an atom shows both a Lorentz profile plus the Doppler effect.
In these cases we can write the profile as an average of the Lorentz profile
over the various velocity states of the atom:

. 1/2 2
o(»)= "P—z (m/2nkT) exp(2 mv; [ 2k2T) do,.  (10.76)
47 Y — o (V—PO“"VOUZ/C) +(F/47T)

We can write this more compactly using the definition of the Voigt function

a o0 e—)’2 2 2 N 2 1 2 2 2 N 1 2 2 2 2 1
H(a,u)= _f dy - 0.30 !
T at+(u—y) ] —— =153 y=000 |
0.25 ——0=1.30 y=050 |
: ' 6=1.00 y=1.00 [
Then Eq. (10.76) can be written as ) ——0=000 y=1.80

o(r)=(drp) " 'n~"2H(a,u),

where ]
0.10 -
I" -
a= , )
47 Ay, 0.05 -
v—v, 0.00 1= e —
TE= A )
vy 10 -5 0 5 10

For small values of a, the center of the line is dominated by the Doppler
profile, whereas the “wings” are dominated by the Lorentz profile.




[Energy Levels of Molecules] - Draine Chap. 5

5.1 Diatomic Molecules

It 1s helpful to consider first the hypothetical case where the nuclei are fixed, and
only the electrons are free to move — this 1s known as the Born-Oppenheimer
approximation. In atoms and atomic ions, the electrons move in a spherically
symmetric potential, and the total electronic orbital angular momentum L. 1s a
good quantum number. In molecules, the electrons move in a Coulomb potential
due to two or more nuclei, and spherical symmetry does not apply. However, in
the case of diatomic molecules (or, more generally, linear molecules), the Coulomb
potential due to the nuclei 1s symmetric under rotation around the nuclear axis (the
line passing through the two nuclei), and L., =(the projection of the electronic
angular momentum onto the internuclear axis) /A is a good quantum number. It is
conventional to define A = |L..|. Because the potential is axially symmetric, the
two states L., = = A have the same energy.

5.1.1 Fine-Structure Splitting

In addition, S., =(projection of the total electron spin onto the internuclear axis) /A
is also a good quantum number; define ¥ = | S, |.

Je, =(projection of the total electronic angular momentum on the internuclear
axis)/h is also a good quantum number. If A and ¥ are both nonzero, then there
are two possible values: J., = |A — ¥| and J., = A + 3.

States with different |J.., | will differ in energy due to fine-structure splitting.
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5.1.2 Hyperfine Splitting

If one or more nuclei have nonzero nuclear spin and J., #* 0, then there will be an
interaction between the nuclear magnetic moment and the magnetic field generated

by the electrons, resulting in “hyperfine splitting”: the energy will depend on the
orientation of the nuclear angular momentum (or angular momenta) relative to the
axis. As in atoms, this splitting is small, of order ~ 107 %eV.
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5.1.3 Designation of Energy Levels: Term Symbols

Diatomic molecules with i1dentical nuclei (e.g., Ho, No, Os) are referred to as
homonuclear. Note that the nuclei must be truly identical — HD and 070 are
not homonuclear molecules. The energy levels of homonuclear diatomic molecules
are designated by term symbols

A= 0 1

(2 >+1 ) L Orbitals o T
u,g >  States )y I1

1 2

3
¢
D
Degeneracy 2

N D o0 N

where

N =

L =311, A, ... for A = 0,1,2,..., where Ah = projection of the electron
orbital angular momentum onto the internuclear axis,

Y.h = projection of the electron spin angular momentum onto the internuclear
axis.

( g (“gerade”) if symmetric under reflection through the

center of mass,
u  (“ungerade”) if antisymmetric under reflection through the
center of mass.

N\

u, g




For the special case of X states, a superscript + or —1s added to the term symbol:

(25 +1)
Zuag 7

where the superscript

( + if symmetric under reflection through (all) planes
containing the nuclei,

— if antisymmetric under reflection through a plane
containing the nuclei.

+ = 9

\

In the case of a heteronuclear diatomic molecule (e.g., HD, OH, or CO), the
energy levels are designated

(22—|—1)£

e,z

where £ and > have the same meaning as for homonuclear diatomic molecules,
but now J. . 1s indicated as a subscript. As for homonuclear molecules, it the term
symbol 1s ., then an additional superscript + is applied, specifying the symmetry
of the wave function under reflection through planes containing the nuclei.
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Because a given molecule may have more than one electronic state with the same
term symbol, the electronic states are distinguished by a letter X, A, B, ..., a, b, ...

appearing in front of the term symbol. The letter X 1s customarily used to designate
the electronic ground state. The ground terms for a number of diatomic molecules
of astrophysical interest are given in Table 5.1

X labels the ground electronic state;
A, B, C, .. .label states of same spin multiplicity as the ground state;
a, b, c,...label states of different spin multiplicity to the ground state.

Ground

term
Ho Iy
CH °I14 /2 32
CH* Iynt
OH 2H3/3_71/2

2
CN 21
CO Iy
SiO Iyt
CS I

The electronic ground state of Hy (two electrons) has zero electronic orbital an-
gular momentum (L. = 0), has zero electron spin (S, = 0), is symmetric under
reflection through the center of mass (g), and 1s symmetric under reflection through
planes containing the nuclei (+). The ground state 1s X 12;.

CO has 2 p electrons contributed by C and 4 p electrons contributed by O; together,
these 6 p electrons fill the 2p subshell, and as a result, the ground electronic state

of CO has zero electronic angular momentum and zero electronic spin: 123 , just
like Hy. The reduced mass of CO is (12 x16/28) amu ~ 6.9amu. The C=0

OH is an example of a molecule with the ground electronic state having nonzero
electronic orbital angular momentum: with seven electrons, the OH ground state
has L., = 1 and S., = 1/2, and is therefore designated by 211, /2,3/2- The electron
spin and orbital angular momenta can couple to give J. = 1/2 or 3/2, with energies
that are separated due to spin-orbit coupling (i.e., fine-structure splitting in atoms
or ions); the J. = 3/2 state has the lower energy.
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Molecular Hydrogen
~ 20
150,000
UH—H
100,000
ot — 10
50,000
D+H@=1) -5
] 0
l I !
0 1 2 3 4
R (108 cm)
Figure 7.1

Energy diagram of the lower electronic states of H,. The short horizontal lines in each of
the bound states indicate the vibrational levels. The transitions from the ground state 12;‘
to the excited states 12;‘ and 1 , are called Lyman and Werner bands, respectively. (Figure
adapted from Watson, 1975, in Atomic and Molecular Physics and the Interstellar Matter, Les
Houches, p. 177.) ’




 Energy Levels

An electronic transition consists of vibrational bands, which in turn are made up of rotational
transitions.

1
E,(v,J)=V,(ro) + hiy (v + 5) + B,J(J + 1)

72
L S
2T

2m,rg
Here, q denotes an electronic state.

Vg =

* Electric-dipole selection rules for electronic transitions in a diatomic molecule

e AA=0,=xleg, X — X, II-X, A—1TI, etc.
e AS=0

¢ AQ=0, %1

e Tt ¥t ¥ — ¥ ,butnot Tt — T~

* g U




5.1.4 O, P, O, R, and S Transitions

A diatomic molecule can vibrate (stretch) along the internuclear axis, and it can
rotate around an axis perpendicular to the internuclear axis. The rotational angular
momentum adds (vectorially) to the electronic angular momentum.

The rotational levels of diatomic molecules are specified by a single vibrational
quantum number v and rotational quantum number /. Transitions will change J
by either 0, £1, or £2. It is customary to identify transitions by specifying the
upper and lower electronic states, upper and lower vibrational states, and one of the
following: O(Jy), P(Je), Q(Je), R(Je), S(J¢), where the usage is given in Table
5.2. Thus, for example, a transition from the v, = 0, J, = 1 level of the ground
electronic state to the v,, =5, J,, =2 level of the first electronic excited state would

be written B—X 5-0 R(1).

Table 5.2 Usage of O, P, (), R, and S

Designation (.J,, —J¢) Note

O(Jy) —2  Electric quadrupole transition
P(Je) —1  Electric dipole transition
(Je) 0 Electric dipole or electric quadrupole; ()(0) is forbidden

Q
R(Jy) +1  Electric dipole transition
S(Je) +2  Electric quadrupole transition
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5.1.6 Ortho-H-> and Para-H,

In the case of Hs, the electronic wave function 1s required to be antisymmetric under
exchange of the two electrons. The two protons, just like the electrons, are identical
fermions, and therefore the Pauli exclusion principle antisymmetry requirement
also applies to exchange of the two protons. The protons are spin 1/2 particles —
the two protons together can have total spin 1 (spins parallel) or total spin O (spins
antiparallel). Without going into the quantum mechanics, the consequence of the
antisymmetry requirement 1s that if the protons have spin 0, the rotational quantum
number J must be even; this is referred to as para-H,, with J =0, 2, 4, .... If the
two protons are parallel, with total spin 1, the rotational quantum number J must
be odd: this is referred to as ortho-H-, with J =1, 3, 5, .... Because the nuclear
spins are only weakly coupled to the electromagnetic field, ortho-Hs and para-Hs
behave as almost distinct species, with conversion of ortho to para, or para to ortho,
happening only very slowly.
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Because Ho has no permanent electric dipole moment, the vibrational states
and the rotational states radiate very weakly, via the time-variation of the elec-
tric quadrupole moment as the molecule vibrates or rotates. Because the nuclear
spin state does not change, the rovibrational radiative transitions of Ho must have
AJ =0or AJ = £2 —1.e., ortho—ortho or para—para.

The vibration—rotation emission spectrum of Hs therefore consists of electric
quadrupole transitions. The downward transitions are identified by

Vy — Uy S(Jg) if Jg — Ju—2 ]
v,—vr Q(Je) ifJp=J,
Uy — Uy O(Jg) if Jp=J,+2

For example, 1-0 S(1) refers to the transition (v=1,J=3) — (v=0,J=1). This
transition 1s indicated in Fig. 5.2.
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Figure 5.2 Vibration-rotation energy levels of the ground electronic state of Hy with
J < 29. The (v, J)=(1, 3) level and 1-0S(1) A = 2.1218 pm transition are indicated.
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Home Works
Due 5PM Dec. 20




Problem 1

* (Rybicki & Lightman problem 4.2)

Suppose that an observer at rest with respect to the fixed distant

stars sees an isotropic distribution of stars. That 1s, in any solid angle 4

he sees dN = N(df)/4x) stars, where N 1s the total number of stars he can
see.

Suppose now that another observer (whose rest frame 1s X’) 1s moving at

a relativistic velocity 8 in the x direction. What 1s the distribution of stars

seen by this observer? Specifically, what is the distribution function

P(0',¢") such that the number of stars seen by this observer in his solid
angle d' is P(8’,¢")d2’? Check to see that [P(8',¢)d{¥'= N, and check
that P(8',¢')= N /4= for f=0. In what direction will the stars “bunch up,”
according to the moving observer?
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Problem 2

* (Rybicki & Lightman problem 10.1)

What radiative transitions are allowed between the fine structure
levels of a P term and those of a °S term? Draw a diagram showing the
levels with spacings determined by the Lande interval rule. How many
spectral lines will be produced, and how will they be spaced relative to one
another? Consider the different possibilities of *P being normal or inverted
and being the upper or lower term.
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Problem 3

* (Rybicki & Lightman problem 10.2)

Which of the following transitions are allowed under L-S cou-
pling selection rules for electric dipole radiation and which are not?
Explain which rules, if any, are violated.

3s 251/2(-—}45 281 /2
2p 2Iwz)l/z“"":z’d 210:5/2
3s3p *P,«<3p* 'D,
2p3p ‘D, 3pdd °F,
2p? *Py<2p3s P,
3s2p 'P,«>2p3p 'P,
253p Py 3pdd °P,
1s? 'S,252p 'P,
2p3p 1S, 2pdd °D,
j. 20’ 2De,/z*“’ZP3 2D1/2

A

e o O

= 0@ -




Problem 4

Kirchhoff Revisited.

(a)

Consider a central spherical blackbody at temperature 1., surrounded
by a concentric, non-scattering shell that is thermally emitting at 75. For a slightline
that passes from the central object through the shell, solve for I, as a function of
7, (s). Write your solution in the form of I,, = B, (1¢.)+A,, i.e., find A, = I,— B, (T¢).
For T,. > T, find I, and A, in the limits 7, < 1, 7, = 1, and 7, > 1, and comment.
How will these change if T, < 147

Now consider the case in which the absorption coeflicient «, is nonzero
for a narrow region (“line”) centered at vy with width Av < vg. Also let the width
have Av < kTg/h, kT, /h, i.e., the line feature is narrow compared to the frequency
scales over which the Planck spectra change. Using your solution for [,,, explain how
the spectrum I,, will look for 1. > T and for T, < T§.

In the optical and infrared, the Sun’s spectrum shows a continuum with absorption
lines, but in the UV and X-rays it shows a continuum with emission lines. Interpret
these physically on the basis of your results.
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Problem 5

e Light Echoes

Consider an observer and a transient source, separated by a distance D. Assume the
environment around the source contains scattering sources, possibly inhomogeneous, but
with small optical depth so that at most one scattering event will occur. The unscattered
light will be seen as the transient outburst, and the scattered radiation will be the light

echo.

As seen in the diagram below, at a given time, a point on the echo will be measured at a
projected distance R from the source.

observer o source

D

If the source is observed at a time ¢ after the transient outburst is
seen, show that the scattering sources lie on an ellipse, for which the source and the
observer are each one focus. Also show that the major axis of the ellipse has length
D + ct. Hint: the major axis is also the sum distances from the each focus to any
point on the ellipse.

To identify the location of the scattering source at projected distance R, we must find
its longitudinal distance z from the source (see diagram). Consider the “parabolic”
approximation in which D > r, z, R. Show that in this approximation, we have

R?> ¢t

“Tot 2

which relates z to the observables R and ¢t.
For the case of SN 1987, the distance is D ~ 50 kpc. In the

http://www.aao.gov.au/images/captions/aat066.html, there is a link to a series of six images.
Look at the image from t = 913 days after the outburst. Estimate R for the two
circles, and calculate z for each. What is the geometry of the scattering surfaces that
produced the rings? Are they located in front of or behind the supernova?
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