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Terms for ns and np subshells
• Draine, Chap. 4

36 CHAPTER 4

Figure 4.1 Energy-level diagram for the ground configuration of the 2p2 ions N II
and O III. (Fine-structure splitting is exaggerated for clarity.) Forbidden transitions
connecting these levels are shown, with wavelengths in vacuo.

Table 4.1 Terms for ns and np Subshells

Ground Terms
configuration (in order of increasing energy) Examples

...ns1 2S1/2 H I, He II, C IV, N V, O VI

...ns2 1S0 He I, C III, N IV, O V

...np1 2P o
1/2,3/2 C II, N III, O IV

...np2 3P0,1,2 , 1D2 , 1S0 C I, N II, O III, Ne V, S III

...np3 4S o
3/2 , 2D o

3/2,5/2 , 2P o
1/2,3/2 N I, O II, Ne IV, S II, Ar IV

...np4 3P2,1,0 , 1D2 , 1S0 O I, Ne III, Mg V, Ar III

...np5 2P o
3/2,1/2 Ne II, Na III, Mg IV, Ar IV

...np6 1S0 Ne I, Na II, Mg III, Ar III

4.6 Hyperfine Structure: Interaction with Nuclear Spin

If the nucleus has nonzero spin, it will have a nonzero magnetic moment. If the
nucleus has a magnetic moment, then fine-structure levels with nonzero electronic
angular momentum can themselves be split due to interaction of the electrons with
the magnetic field produced by the nucleus. This “hyperfine” splitting is typically
of order 10−6 eV. Hyperfine splitting is usually difficult to observe in optical spec-
tra due to Doppler broadening, but it needs to be taken into account if precise
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• Configurations

Terms

Fine Structure (Spin-Orbit Interaction)

Hyperfine Structure (Interaction with Nuclear Spin)

• Zeeman Effect:
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modeling of line profiles is required.
It is customary to let

J ≡ [electronic angular momentum]/h̄ ,
I ≡ [nuclear angular momentum]/h̄ , and
F ≡ [total angular momentum]/h̄ .

The best-known example of hyperfine splitting is the hydrogen atom, where the
ground electronic state 1s 2S1/2 has J = 1/2 and the proton has I = 1/2. The
1s 2S1/2 state is split into two levels: The lower level has the electron and proton
spins antiparallel, with total angular momentum F = 0. The hyperfine excited
state has the proton and electron spins parallel, and F = 1. The levels are split by
∆E = 6.7×10−6 eV, giving rise to the astronomically important 21-cm transition.

4.7 Zeeman Effect

When a static magnetic field B0 is applied, each of the fine-structure levels LJ

splits into 2J+1 energy levels, with energies depending on the value of J ·B0. The
energy splittings are small, of order µBB0 ≈ 5.78 × 10−15(B0/ µG) eV, where
µB ≡ eh̄/2mec is the Bohr magneton. Interstellar magnetic field strengths are of
order 1−100µG, and therefore the Zeeman shifts are too small to be measured for
transitions in the sub-mm or shortward (hν >∼ 10−4 eV).

However, in the case of atomic hydrogen, the hyperfine splitting gives rise to the
21-cm transition, with an energy hν = 5.9 × 10−6 eV, and, therefore, an applied
field of order 10µG shifts the frequency by about one part in 108. This shift is
much smaller than the frequency shift v/c ∼ 10−5 due to a radial velocity of a
few km s−1, and it would be nearly impossible to detect, except that it leads to a
shift in frequency between the two circular polarization modes. The Zeeman effect
in H I 21-cm can therefore be detected by taking the difference of the two circular
polarization signals. This technique has been used to measure the magnetic field
strength in a number of H I regions.

4.8 Further Reading

Bransden & Joachain (2003) provide a comprehensive discussion of the spectroscopy
of atoms and ions.
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2.9 Collisional Excitation

1. Under the conditions of very low density and weak radiation Öelds,

(a) The vast majority of the atoms reside in the ground state.
collisional excitation timescale ! radiative decay time scale
This condition will remain true even if the excited state has a radiative lifetime of
several second. This is frequently the case for the forbidden transitions observed in
ionized astrophysical plasmas.

(b) áux of an emission line _ áux number of collisions
/ product of the number densities of the two colliding species by the probability
that a collision will produce a collisional excitation

(c) If the energy gap between the ground state and the excited state, E12, is much larger
than the mean energy of the colliding species # T , then, because there are few
very energetic collisions, relatively few collisional excitations can occur. Therefore,
the resulting emission line will be very much weaker than when E12 $ kT .
=) This gives us the possibility of measuring temperature from the relative strengths
of lines coming from excited levels at di§erent energies above the ground state.
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2. At high enough densities,

(a) The collisional timescales are short.

(b) The population in any upper level is set by the balance between collisional excita-
tion, and the collisional deexcitation out of these levels, and are governed by the
Boltzmann equlibrium.

3. At intermediate densities,

(a) The collisional rates and the radiative decay rates are compatible.

(b) The intensity of an emission line is determined by both the temperature and the
density.

(c) If the temperature is known, the density can be determined from the intensity ratio
of two such lines.
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4. Collisional Rate (Two Level Atom)

(a) The collisional cross section is in general varying approximately inversely as the
impact energy (because of the focusing e§ect of the Coulomb force).

!12 (v) =
!
#a20
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@ hR
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2
ev
2
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g1

cm2 for
1

2
m2ev
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where; a0 =
~2

mee2
= 5:12! 1013 cm, Bohr radius

R =
mee4

4#~3
= 109; 737 cm"1, Rydberg constant

(b) The collision strength '12 is a function of electron velocity (or energy) but is often
approximately constant near the threshold, g1 is the statistical weight of the lower
level.
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(c) Advantage of using the collision strength

i. It removes the primary energy dependence for most atomic transitions.

ii. The symmetry between the upper and the lower states.
Using the principle of detailed balance, which states that in thermodynamic equi-
librium each microscopic process is balanced by its inverse,

nen1v1$12 (v1) f (v1) dv1 = nen2v2$21 (v2) f (v2) dv2;

where v1 and v2 are related by
1
2mev

2
1 =

1
2mev

2
2 +E12, and using the Boltzman

equation of thermodynamic equilibrium,

n2
n1
=
g2
g1
exp

!
!
E12
kT

"

we derive the following relation

g1v
2
1$12 (v1) = g2v

2
2$21 (v2) ;

and the symmetry of the collision strength between levels

*12 = *21:
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(d) Collisional excitation and de-excitation rates
If !21 is a constant, the total collisional de-excitation rate per unit volume per unit
time is

R21 = nen2q21

= nen2

Z 1

0
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= nen2
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and the collisional excitation rate per unit volume per unit time is R12 = nen1q12,
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(e) Quantum mechanical sum rule for collision strengths for the case where one term
consists of a single level and the second consists of a multiplet, if either S = 0 or
L = 0,

#(SLJ;S0L0J 0) =

!
2J 0 + 1

"

(2S0 + 1) (2L0 + 1)
#(SL;S0L0)

Here,
!
2J 0 + 1

"
is the statistical weight of an individual level (or term) in the

multiplet, and
!
2S0 + 1

" !
2L0 + 1

"
is the statistical weight of the multiplet. We

can regard the collision strength as ìsharedî amongst these levels in proportion to
the statistical weights of the individual levels (gJ = 2J + 1).

i. C-like ions
#
1s22s22p2 ! 1s22s22p2; same electron conÖgurations

$
! forbid-

den or intercombination transitions.
ground states (triplet) ñ 3P0 :3 P1 :3 P2 = 1=9 : 3=9 : 5=9

excited states (singlets) ñ 1D2;1 S1

ii. Li-like ions
#
1s22s1 ! 1s22p1

$
! resonance transitions

ground state (single) ñ 2S1=2

excited states (doublet) ñ 2P3=2 :
2 P1=2 = 2=3 : 1=3
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(f) Limiting Cases

i. In the low density limit, the collisional rate between atoms and electrons is much
slower than the radiative deexcitation rate of the excited level. Thus, we can
balance the collisional feeding into level 2 by the rate of radiative transitions
back down to level 1. The collision rate is

R12 = A21n2;

n2 =
nen1q12
A21

;

where A21 is the Einstein coe¢cient for spontaneous emission. Emission line áux
is

F21 = E12A21n2 = E12R12

= nen1E12
8:62942! 10"6

T 1=2
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!

exp
#
"
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erg cm"3 s"1

' .n2e/E12T
"1=2

 
)12
g1

!

exp
#
"
E12
kT

$

For low temperatures, the exponential term dominates. At high temperature, the
T"1=2 term controls the cooling rate.
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ii. In high-density limt, the level populations are set by the Boltzman equilibrium,

F21 = E12A21n2

= n1E12A21
g2
g1
exp

!
!
E12
kT

"

' (neE12A21
g2
g1
exp

!
!
E12
kT

"

iii. Critical density deÖned as the density where the radiative depopulation rate
matches the collisional deexcitation for the excited state,

A21n2 = R21

A21n2 = nen2
+

T 1=2
'21
g2

ncrit =
A21g2T

1=2

+'12
cm!3:

At around this density, the line emissivity plotted in log-scale changes slope from
+2 to +1.
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5. The Three-Level Atom (Line diagnostics)

(a) Let Cij be the collision rate (Cij = neqij s!1) between any two levels. The
equations of statistical equilibrium for a three level atom are

N1C13 +N2C23 = N3 (C31 + C32 +A32 +A31) ;

N1C12 +N3 (C32 +A32) = N2 (C23 + C21 +A21) ;

N1 +N2 +N3 = 1:

(b) Electron temperature

i. Low-Density Limit; E12 " E23

ii. In this limit, C31 " C32 " 0. Also, because of the increasing threshold energies
to excite each level, N3 # N2 # N1 so that the equations are reduced to

N3 =
N1C13

(A32 +A31)

N2 =
N1C12
A21

:

If we now form the line intensity ratio for the 3! 2 and 2! 1 transitions, we
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have

F32
F21

=
E23N3A32
E12N2A21

=
E23A32C13

E12(A32 +A31)C12

=
E23A32q13
E12A31q12

=
E23A32(13
E12A31(12

exp
!
!
E23
kT

"
:

provided that A32 is very much less than A31:
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Temperature

Use two levels with di§erent excitation energy.
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(c) Ions in which E23 ! E12

i. In low density limit

N1C13 = N3A31;

N1C12 = N2A21;

F31
F21

=
E31A31N3
E21A21N2

=
E31C13
E21C12

"
%31
%21

exp
!
#
E23
kT

"
"
%31
%21

=
g3
g2
:

using the quantum-mechanical sum rule for collision strengths.

ii. In high density limit, the upper levels are populated according to their Bolzmann
ratios,

F31
F21

=
E31A31N3
E21A21N2

"
A31g3
A21g2
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Density

Choose atom with two levels with almost same excitation energy.
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[Einstein Coefficients and Oscillator Strengths]
• Recall resonance scattering cross-section and the Einstein relations:

• The Einstein (absorption) B coefficient associated with a classical oscillator can be defined in 
terms of the total energy extracted from a beam of radiation.

It is convenient to define the absorption and emission oscillator strengths (               ) by the 
formulae:

The oscillator strength (or f value) is the factor which corrects the classical result. The quantum 
mechanical process can be interpreted as being due to a (fractional) number  f of equivalent 
classical electron oscillators of the same frequency.

σ lu (ν ) =
πe2

mc
γ / 4π 2

ν −ν0( )2 + γ / 4π( )2

σ lu (ν )dν = πe2

mc0

∞

∫ ≡ Blu
classical hν lu

4π
→ Blu

classical = 4π
2e2

hν lumc

glBlu = guBul

Aul =
2hν lu

3

c2
Bul

Bul =
4π 2e2

hνulmc
ful (note that νul = −ν lu < 0 and ful < 0)Blu = Blu

classical flu =
4π 2e2

hν lumc
flu

flu and ful

where ν lu ≡
Eu − El

h
(= ν0 )
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• In quantum mechanics, the absorption oscillator strength is given by

where the sum is over all substates of the upper and lower levels.

We also have the following relations.

• Thomas-Reiche-Kuhn sum rule

Here, the summation is over all states of the atom. Where there is a close shell and a smaller number 
q of electrons outside the closed shells that are involved in a more limited set of transitions, we also 
have

where the sum is now only over those states involve transitions of these outer electrons.
We note that f ~ 1 for strong allowed transitions.

gl flu = −gu ful

guAul ≡ − 8π
2e2νul

2

mc3
gu ful =

8π 2e2ν lu
2

mc3
gl flu

σ (ν ) = πe2

mc
flu

= πe2

mc
fluφ(ν )

 
flu =

2m
3!2gle

2 Eu − El( ) dlu
2∑

fnn ′
n ′
∑ = N = total number of electrons in the atom

fnn ′
n ′
∑ = q

dlu ≡ φu er φl
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[Line Broadening Mechanisms]
• Atomic levels are not infinitely sharp, nor are the lines connecting them.

(1) Doppler Broadening

(2) Natural Broadening

(3) Collisional Broadening

 vz to vz + dvz
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Thus since the total gf is 0.8324 [cf (10.45)], we have (gf) 1/2-3/2= 
0.5549, (gf) 1/2 - 1/2 = 0.2775. Tables to deduce the relative strength of 
lines within a multiplet can be found in Allen (1974) and Aller (1963). 

Another use of the L-S coupling scheme is to deduce the relative 
strengths of rnultipkts between two configurations. This kind of calculation 
is affected more by deviations from L-S coupling than the preceding, so 
that it is not as reliable. The set of multiplets arising out of transitions 
between two configurations is called a transition array, and the relative 
strengths of multiplets within a transition array is discussed in the above 
references. 

Other coupling schemes give their own rules for relatingf values, but we 
do not discuss these here. In cases where a particular coupling scheme is 
not applicable, or its applicability is dubious, we must obtain f values for 
the desired transitions either directly by experiment or by a more sophisti- 
cated theoretical calculation. 

10.6 LINE BROADENING MECHANISMS 

Atomic levels are not infinitely sharp, nor are the lines connecting them. 
This was already recognized in our discussion of the Einstein coefficients, 
where we introduced the line profile function +(u)  to account for the 
nonzero width of the line. Many physical effects determine the line shape, 
and we can only deal with a few here (see, e.g., Griem 1974; Mihalas 
1978). 

Doppler Broadening 

Perhaps the simplest mechanism for line broadening is the Doppler effect. 
An atom is in thermal motion, so that the frequency of emission or 
absorption in its own frame corresponds to a different frequency for an 
observer. Each atom has its own Doppler shift, so that the net effect is to 
spread the line out, but not to change its total strength. 

The change in frequency associated with an atom with velocity compo- 
nent u, along the line of sight (say, z axis) is, to lowest order in v / c ,  given 
by Eq. (4.12) 

YOV, v - v 0 = -  
C 

(10.66) 

Here yo is the rest-frame frequency. The number of atoms having velocities 
ν
ν0

= 1
γ 1− β cosθ( ) → ν ≈ν0 1+ β cosθ( )⎡

⎣
⎢

⎤

⎦
⎥
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Here yo is the rest-frame frequency. The number of atoms having velocities 
288 RadiatiwTrruritions 

in the range v, to u, + dv, is proportional to the Maxwellian distribution 

where ma is the mass of an atom. From the above we have the relations 

c du 
VO 

doz = - . 

(10.67a) 

(10.67b) 

Therefore, the strength of the emission in the frequency range v to v + dv is 
proportional to 

and the profile function is 

- ( v -  4 2 / ( A v D ) 2 ,  d v )  = 
A v D G  

Here the Doppler width A v D  is defined by 

(10.68) 

(10.69) 

The constant ( A v D G ) - '  in the formula for +(v) is determined by the 
normalization condition /c#J(v) dv = 1 under the (reasonable) assumption 
that AvD<<vo. The line-center cross section for each atom, neglecting 
stimulated emission, is therefore 

r e  1 

mc A v D G  
= --fiz--- (10.70) 
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for the case of Doppler broadening. Numerically this is 

avo= 1.16X 1 0 - ' 4 h , ~ f 1 2  cm2, (10.71) 

where A, is in k, T in K ,  and A is the atomic weight for the atom. 
In addition to thermal motions there can also be turbulent velocities 

associated with macroscopic velocity fields. When the scale of the turbu- 
lence is small in comparison with a mean free path (called microturbulence) 
these motions are often accounted for by an effective Doppler width 

(10.72) 

where 6 is a root mean-square measure of the turbulent velocities. This 
assumes that the turbulent velocities also have a Gaussian distribution. 

Natural Broadening 

A certain width to the atomic level is implied by the uncertainty principle, 
namely, that the spread in energy AE and the duration A t  in the state must 
satisfy A13At-h. We note that the spontaneous decay of an atomic state n 
proceeds at a rate 

where the sum is over all states n' of lower energy. If radiation is present, 
we should add the induced rates to this. The coefficient of the wave 
function of state n,  therefore, is of the form e-"'I2 and leads to a decay of 
the electric field by the same factor. (The energy then decays proportional 
to eTYt, )  Therefore, we have an emitted spectrum determined by the 
decaying sinusoid type of electric field, as given in $2.3 and Fig. 2.3. Thus 
the profile is of the form 

= Y/4T2 (10.73) 
( v  - %I2 + (Y/4TI2 . 

This is called a Lorentz (or natural) profile. 
Actually, the above result applies to cases in which only the upper state 

is broadened (e.g., transitions to the ground state). If both the upper and 
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the profile is of the form 
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This is called a Lorentz (or natural) profile. 
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for the case of Doppler broadening. Numerically this is 

avo= 1.16X 1 0 - ' 4 h , ~ f 1 2  cm2, (10.71) 
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(10.72) 

where 6 is a root mean-square measure of the turbulent velocities. This 
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This is called a Lorentz (or natural) profile. 
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is broadened (e.g., transitions to the ground state). If both the upper and 

lower state are broadened, then the appropriate definition for y is 

Y = Y u  + Yl? (10.74) 

where y, and y, are the widths of the upper and lower states involved in the 
transition. Thus, for example, we can have a weak but broad line if the 
lower state is broadened substantially. 

Collisional Broadening 

The Lorentz profile applies even more generally to certain types of 
collisional broadening mechanisms. For example, if the atom suffers colli- 
sions with other particles while it is emitting, the phase of the emitted 
radiation can be altered suddenly (see Fig. 10.3). If the phase changes 
completely randomly at the collision times, then information about the 
emitting frequencies is lost. If the collisions occur with frequency vcol, that 
is, each atom experiences vcol collisions per unit time on the average, then 
the profile is (see Problem 10.7). 

(10.75a) 

where 

r = +2v,01. (10.75b) 

I I 

4 t 2  

Figure 10.3 Time-dependence of the electric feld of emitted radiation which is 
(a) pum& sinusoidal and (6) subject to random phase intemrptions by atomic 
collisions. 
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Combined Doppler and Lorentz Profiles 

Quite often an atom shows both a Lorentz profile plus the Doppler effect. 
In these cases we can write the profile as an average of the Lorentz profile 
over the various velocity states of the atom: 

We can write this more compactly using the definition of the Voigt function 

(10.77) 

Then Eq.. (10.76) can be written as 

where 

r a= - 
47rAuD ’ ( 10.79a) 

( I0.79b) 

For small values of a, the center of the line is dominated by the Doppler 
profile, whereas the “wings” are dominated by the Lorentz profile. (See 
problem 10.5). 

PROBLEMS 

10.1 -What radiative transitions are allowed between the fine structure 
levels of a 3P term and those of a 3S term? Draw a diagram showing the 
levels with spacings determined by the Lande interval rule. How many 
spectral lines will be produced, and how will they be spaced relative to one 
another? Consider the different possibilities of 3P being normal or inverted 
and being the upper or lower term. 
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[Energy Levels of Molecules] - Draine Chap. 5

Chapter Five

Energy Levels of Molecules

This chapter reviews the energy-level structure of small molecules, with particular
attention to selected molecules of astrophysical interest: H2, CO, OH, NH3, and
H2O. Just as for Chapter 4, Chapter 5 should be regarded as reference material
– give it a quick once-over now, then return to it when you need to understand
observations of some molecule.

5.1 Diatomic Molecules

It is helpful to consider first the hypothetical case where the nuclei are fixed, and
only the electrons are free to move – this is known as the Born-Oppenheimer
approximation. In atoms and atomic ions, the electrons move in a spherically
symmetric potential, and the total electronic orbital angular momentum Le is a
good quantum number. In molecules, the electrons move in a Coulomb potential
due to two or more nuclei, and spherical symmetry does not apply. However, in
the case of diatomic molecules (or, more generally, linear molecules), the Coulomb
potential due to the nuclei is symmetric under rotation around the nuclear axis (the
line passing through the two nuclei), and Lez =(the projection of the electronic
angular momentum onto the internuclear axis)/h̄ is a good quantum number. It is
conventional to define Λ ≡ |Lez|. Because the potential is axially symmetric, the
two states Lez = ±Λ have the same energy.

5.1.1 Fine-Structure Splitting

In addition, Sez =(projection of the total electron spin onto the internuclear axis)/h̄
is also a good quantum number; define Σ ≡ |Sez|.
Jez =(projection of the total electronic angular momentum on the internuclear

axis)/h̄ is also a good quantum number. If Λ and Σ are both nonzero, then there
are two possible values: Jez = |Λ− Σ| and Jez = Λ+ Σ.

States with different |Jez| will differ in energy due to fine-structure splitting.

5.1.2 Hyperfine Splitting

If one or more nuclei have nonzero nuclear spin and Jez ̸= 0, then there will be an
interaction between the nuclear magnetic moment and the magnetic field generated
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States with different |Jez| will differ in energy due to fine-structure splitting.

5.1.2 Hyperfine Splitting

If one or more nuclei have nonzero nuclear spin and Jez ̸= 0, then there will be an
interaction between the nuclear magnetic moment and the magnetic field generated
ENERGY LEVELS OF MOLECULES 39

by the electrons, resulting in “hyperfine splitting”: the energy will depend on the
orientation of the nuclear angular momentum (or angular momenta) relative to the
axis. As in atoms, this splitting is small, of order ∼ 10−6 eV.

5.1.3 Designation of Energy Levels: Term Symbols

Diatomic molecules with identical nuclei (e.g., H2, N2, O2) are referred to as
homonuclear. Note that the nuclei must be truly identical – HD and 16O17O are
not homonuclear molecules. The energy levels of homonuclear diatomic molecules
are designated by term symbols

(2Σ+1)Lu,g ,
where

L = Σ, Π, ∆, ... for Λ = 0, 1, 2, ..., where Λh̄ = projection of the electron
orbital angular momentum onto the internuclear axis,

Σh̄ = projection of the electron spin angular momentum onto the internuclear
axis.

u, g =

⎧
⎪⎪⎨

⎪⎪⎩

g (“gerade”) if symmetric under reflection through the
center of mass,

u (“ungerade”) if antisymmetric under reflection through the
center of mass.

For the special case of Σ states, a superscript + or – is added to the term symbol:

(2Σ+1)Σ±
u,g ,

where the superscript

± =

⎧
⎪⎪⎨

⎪⎪⎩

+ if symmetric under reflection through (all) planes
containing the nuclei,

− if antisymmetric under reflection through a plane
containing the nuclei.

In the case of a heteronuclear diatomic molecule (e.g., HD, OH, or CO), the
energy levels are designated

(2Σ+1)LJe,z

where L and Σ have the same meaning as for homonuclear diatomic molecules,
but now Je,z is indicated as a subscript. As for homonuclear molecules, if the term
symbol is Σ, then an additional superscript ± is applied, specifying the symmetry
of the wave function under reflection through planes containing the nuclei.

Because a given molecule may have more than one electronic state with the same
term symbol, the electronic states are distinguished by a letter X, A, B, ..., a, b, ...
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be considered. Of course, all diatomic molecules are linear molecules and
only two separate symmetry cases need to be considered:

Homonuclear diatomics, where both atoms are the same, e.g. H2, N2, O2.

Heteronuclear diatomics, where the atoms are different, e.g. CO, HF, CH.

As the electron spin is usually not strongly coupled to the frame of the
molecule, the treatment of spin follows very much the same principles as
in the atomic case. Each electron has its individual spin angular momen-
tum, si. These can be summed to give a total spin angular momentum,
S, again remembering that paired electrons in closed shells make zero
contribution to this sum. The electronic states of molecules are designated
by their spin multiplicity, 2S + 1, which is given as a leading superscript,
exactly as in the atomic case.

In an atom the treatment of the individual orbital angular momenta,
li, follows along similar lines to the treatment of spin. However molecules
are not spherical and the orbital angular momentum of the individual
electrons is no longer a conserved quantity. For diatomic molecules, the
total orbital angular momentum L is strongly coupled to the nuclear axis.
It is therefore necessary to consider the components of L, designated Λ,
along the diatomic nuclear axis which, by convention, is taken to define
the z-axis of the system. What this means is that while the value of the
total orbital angular momentum in a diatomic molecule can change, its
projection onto the diatomic axis is conserved. As the projection of L onto
z-axis can be either positive or negative, states with Λ ̸= 0 are
twofold degenerate while Σ states, which have Λ = 0, are singly
degenerate.

Electronic states are labelled by their value of Λ rather than L. Values
of Λ are denoted using the Greek letter equivalent of the Latin letter
used to denote L (see Table 9.1), thus Σ, Π, ∆ are equivalent to the atomic

Table 9.1. Letter designations for projected
total orbital angular momentum quantum
number, Λ.

Λ = 0 1 2 3 4 . . .
Orbitals σ π δ φ γ . . .
States Σ Π ∆ Φ Γ . . .
Degeneracy 1 2 2 2 2 . . .
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Table 5.1 Selected Diatomic Moleculesa

Ground B0/hc b B0/k b r0 d µ c ν0/c b

term ( cm−1) (K) (Å) (D) ( cm−1) Λ-doubling
H2

1Σ+
g 59.335f 85.37 0.741 0 4161 –

CH 2Π1/2,3/2 14.190 20.42 1.120g 1.406g 2733. ν ≈ 3.3GHz

CH+ 1Σ+
0 13.931 20.04 1.131 1.679e 2612. –

OH 2Π3/2,1/2 18.550 26.69 0.9697 1.6676 3570. ν ≈ 1.61GHz

CN 2Σ+
1/2 1.8910 2.721 1.1718 0.557i 2042. –

CO 1Σ+
0 1.9225 2.766 1.1283 0.1098 2170. –

SiO 1Σ+
0 0.7242 1.042 1.5097 3.098 1230. –

CS 1Σ+
0 0.8171 1.175 1.5349 2.001h 1272. –

a Data from Huber & Herzberg (1979) unless otherwise noted.
b E(v, J) ≈ hν0(v + 1

2 ) +B0J(J + 1) [see Eq. (5.2)].
c µ = permanent electric dipole moment. g Kalemos et al. (1999).
d r0 = internuclear separation. h Maroulis et al. (2000).
e Folomeg et al. (1987). i Neogrády et al. (2002).
f Jennings et al. (1984).

appearing in front of the term symbol. The letter X is customarily used to designate
the electronic ground state. The ground terms for a number of diatomic molecules
of astrophysical interest are given in Table 5.1, along with the internuclear separa-
tion r0 and the electric dipole moment µ.

5.1.4 O, P, Q, R, and S Transitions

A diatomic molecule can vibrate (stretch) along the internuclear axis, and it can
rotate around an axis perpendicular to the internuclear axis. The rotational angular
momentum adds (vectorially) to the electronic angular momentum.

The rotational levels of diatomic molecules are specified by a single vibrational
quantum number v and rotational quantum number J . Transitions will change J
by either 0, ±1, or ±2. It is customary to identify transitions by specifying the
upper and lower electronic states, upper and lower vibrational states, and one of the
following: O(Jℓ), P (Jℓ), Q(Jℓ), R(Jℓ), S(Jℓ), where the usage is given in Table
5.2. Thus, for example, a transition from the vℓ = 0, Jℓ = 1 level of the ground
electronic state to the vu=5, Ju=2 level of the first electronic excited state would
be written B–X 5–0 R(1).

Table 5.2 Usage of O, P , Q, R, and S

Designation (Ju−Jℓ) Note
O(Jℓ) −2 Electric quadrupole transition
P (Jℓ) −1 Electric dipole transition
Q(Jℓ) 0 Electric dipole or electric quadrupole; Q(0) is forbidden
R(Jℓ) +1 Electric dipole transition
S(Jℓ) +2 Electric quadrupole transition
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5.1.5 H2

The electronic ground state of H2 (two electrons) has zero electronic orbital an-
gular momentum (Le = 0), has zero electron spin (Se = 0), is symmetric under
reflection through the center of mass (g), and is symmetric under reflection through
planes containing the nuclei (+). The ground state is X 1Σ+

g .
Consider the two nuclei at some fixed separation rn: one can solve the electron

Schrödinger equation for the electrons moving in this potential and obtain the elec-
tron eigenfunctions ψq and eigenenergies E(e)

q (rn), where q denotes the quantum
numbers that characterize the eigenfunction. If we (slowly) vary the internuclear
separation rn, the electron eigenfunctions ψq will change adiabatically, as will the
eigenenergies E(e)

q (rn). Therefore, we can define a function

Vq(rn) ≡ E(e)
q (rn) + Z1Z2

e2

rn
(5.1)

that is an effective potential governing the internuclear separation. In Figure 5.1,
we show the effective internuclear potential Vq(rn) for the electronic ground state
and the first two excited states of H2.

If we consider only radial, or “vibrational,” motions of the two nuclei, the inter-
nuclear separation obeys an equation of motion identical to that of a particle with a
mass equal to the “reduced mass” mr = m1m2/(m1 +m2), moving in a potential
Vq(r). The vibrational energy levels are quantized, with vibrational quantum num-
ber v = 0, 1, 2, ... corresponding to the number of nodes in the vibrational wave
function. Suppose that Vq(r) has a minimum at nuclear separation r0. In the neigh-
borhood of r0, the potential can be approximated Vq(r) ≈ Vq(r0)+(1/2)k(r−r0)2,
corresponding to a “spring constant” k characterizing the curvature of the potential.
Classically, for small-amplitude vibrations we would have a harmonic oscillator
with angular frequency ω0 = (k/mr)1/2. The spring constant k = d2Vq/dr2 is
closely related to the strength of the chemical bond. While k will differ from one
chemical bond to another, it varies less than does the reduced mass. Hydrides (i.e.,
species of chemical formula XH) will have the smallest reduced mass, with H2

being the extreme limit, with mr = mH/2. Therefore, the H2 molecule has an un-
usually high fundamental vibrational frequency ω0, corresponding to a wavelength
λ ≈ 2.1µm.

In addition to vibrational motion, the two nuclei can also undergo rotational mo-
tion around their center of mass, with quantized angular momentum Jh̄, where J =
0, 1, 2, .... Classically, the rotational kinetic energy of a rigid rotor is (Jh̄)2/2I ,
where I is the moment of inertia of the molecule. If we consider masses m1 and m2

separated by distance r0, the moment of inertia I = mrr20 . Quantum-mechanically,
we replace the classical J2 by J(J+1). Therefore, we expect the rotational kinetic
energy Erot = J(J +1)h̄2/2mrr20 , and the total vibration-rotation energy when in
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Because H2 has no permanent electric dipole moment, the vibrational states
and the rotational states radiate very weakly, via the time-variation of the elec-
tric quadrupole moment as the molecule vibrates or rotates. Because the nuclear
spin state does not change, the rovibrational radiative transitions of H2 must have
∆J = 0 or ∆J = ±2 – i.e., ortho→ortho or para→para.

The vibration–rotation emission spectrum of H2 therefore consists of electric
quadrupole transitions. The downward transitions are identified by

vu−vℓ S(Jℓ) if Jℓ = Ju−2 ,

vu−vℓ Q(Jℓ) if Jℓ = Ju ,

vu−vℓ O(Jℓ) if Jℓ = Ju+2 .

For example, 1–0 S(1) refers to the transition (v=1, J=3) → (v=0, J=1). This
transition is indicated in Fig. 5.2.

5.1.7 CO

CO has 2 p electrons contributed by C and 4 p electrons contributed by O; together,
these 6 p electrons fill the 2p subshell, and as a result, the ground electronic state
of CO has zero electronic angular momentum and zero electronic spin: 1Σ+

0 , just
like H2. The reduced mass of CO is (12×16/28) amu ≈ 6.9 amu. The C=O
chemical bond is extremely strong; r0 is unusually small, the spring constant k
is unusually large, and the electric dipole moment (only µ = 0.110D) is unusu-
ally small. The fundamental vibrational frequency corresponds to a wavelength
λ0 = c/ν0 ≈ 4.6µm. (The energy is ∼ 50% of the energy in the H2 funda-
mental frequency.) The fundamental rotational frequency 2B0/h = 115GHz, and
h̄2/Ik ≈ 5.5K (versus 170K for H2). Because the moment of inertia of CO is
much larger than that of H2, the rotational levels of CO are much more closely
spaced than those of H2, and therefore there are many more allowed rotation–
vibration levels.

If µ is the permanent electric dipole moment, the Einstein A coefficient for a
rotational transition J → J−1, radiating a photon with energy h̄ω, is given by

AJ→J−1 =
2

3

ω3

h̄c3
µ2 2J

2J + 1
(5.4)

=
128π3

3h̄

(
B0

hc

)3

µ2 J4

J + 1
2

s−1 (5.5)

=1.07× 10−7 J4

J + 1
2

s−1 (5.6)

=7.16× 10−8 s−1 for J = 1 → 0 . (5.7)
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5.1.8⋆ OH and Λ-Doubling

OH is an example of a molecule with the ground electronic state having nonzero
electronic orbital angular momentum: with seven electrons, the OH ground state
has Lez = 1 and Sez = 1/2, and is therefore designated by 2Π1/2,3/2. The electron
spin and orbital angular momenta can couple to give Je = 1/2 or 3/2, with energies
that are separated due to spin-orbit coupling (i.e., fine-structure splitting in atoms
or ions); the Je = 3/2 state has the lower energy.

Now consider either one of these fine-structure states. The projection of the
electron angular momentum along the nuclear axis is a constant of the motion, but
the vector angular momentum Je of the electrons is not. The electric field from the
nuclei exerts a torque on the electrons. If the nuclei were held fixed in space, the
electron angular momentum vector would precess in a cone centered on the nuclear
axis. Now, of course, the nuclei are not held fixed, and if the electron angular
momentum Je changes, there must be an equal and opposite change in the angular
momentum of the nuclei.

For the moment, ignore the nuclear spin – if the nuclear angular momentum
is going to change, the nuclei must be undergoing rotation. The implication is
that the nuclei undergo rotation even when the OH is in the ground state. Since
there is no external torque applied to the OH, the electron angular momentum Je

and the nuclear angular momentum Jn both precess around the fixed total angular
momentum J = Jn + Je. The magnitude of the total angular momentum J is just
equal to the magnitude of the electronic angular momentum that is found when the
nuclei are imagined to be held fixed.1

If additional angular momentum is given to the nuclei, the rotational kinetic en-
ergy will be increased, and each of the fine structure states of OH will have a
“rotational ladder”: the Je = 1/2 state can have total angular momentum J=1/2,
3/2, 5/2, 7/2, ..., and the Je = 3/2 state can have J = 3/2, 5/2, 7/2, ..., and so on.
The two rotational ladders are shown in Figure 5.3.

For the moment, let us reexamine the electronic wave functions in the idealiza-
tion where the nuclei are held fixed, so that the electrons are moving in a poten-
tial that is time-independent and symmetric around the nuclear axis. For a linear
molecule such as OH, the electronic eigenfunctions are of the form ψ(r, θ,φ) =
e±iΛφf(r, θ), where Λ is the projection of the electronic angular momentum along
the nuclear axis, and (r, θ,φ) are spherical coordinates with the center of mass as
origin and with the polar axis along the internuclear axis: for Λ > 0, there are two
degenerate states. Taking orthogonal linear combinations of these eigenfunctions,

1Imagine the nuclei being held fixed, with the electrons orbiting around the nuclear axis. If the
nuclei are suddenly released, the total angular momentum will remain unchanged (and equal to the
angular momentum of the electrons just prior to the moment of release) but will now be shared by the
electrons and the nuclei.

May 17, 2005 14:40 WSPC/SPI-B267: Astronomical Spectroscopy ch09

132 Astronomical Spectroscopy

9.2.3 State labels

Giving an electronic state a symmetry designation such as 1Σ+
g is not

unique. In fact there is likely to be an infinite number of states with this
symmetry for a given molecule. In atoms it is common, if not univer-
sal practice, to precede the spectroscopic term value with n, the principal
quantum number of the outer electron. For molecules this system would
still not give a unique set of labels, so a different, rather more ad hoc system
is used.

Each electronic state is proceeded by a letter. The following convention
is used to assign the appropriate letter:

X labels the ground electronic state;
A, B, C, . . . label states of same spin multiplicity as the ground state;
a, b, c, . . . label states of different spin multiplicity to the ground state.

In principle, states are labelled alphabetically in ascending energy
order. In practice there many exceptions. For example, the lowest triplet
state of H2 is the b 3Σ+

u with the a 3Σ+
g lying somewhat higher. Sim-

ilarly there is a higher singlet state, which has a double minimum,
labelled E, F 1Σ+

g . The reasons for these various mislabellings are usually
historical.

9.3 Schrödinger Equation
The Schrödinger equation for a diatomic molecule with nucleus A, of mass
MA and nuclear charge ZA, and nucleus B, of mass MB and nuclear charge
ZB, and N electrons can be written as

(
− !2

2MA
∇2

A − !2

2MB
∇2

B −
!2

2me

N

∑
i=1

∇2
i + Ve − E

)
Ψ(RA, RB, ri) = 0 , (9.5)

where the first two terms are the kinetic energy operators for the motions
of nuclei A and B respectively, the third term gives the kinetic energy oper-
ator for the electrons, and Ve is the potential. The potential is given by the
various Coulomb interactions within the molecule:

Ve =
e2

4πϵ0

(
−

N

∑
i=1

ZA

rAi
−

N

∑
i=1

ZB

rBi
+

N

∑
i=2

i−1

∑
j=1

1
ri j

+
ZAZB

R

)
. (9.6)
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• Energy Levels

An electronic transition consists of vibrational bands, which in turn are made up of rotational 
transitions.

Here, q denotes an electronic state.

• Electric-dipole selection rules for electronic transitions in a diatomic molecule
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electronic state q is, in the harmonic-oscillator and rigid-rotor approximation:

Eq(v, J)=Vq(r0) + hν0

(
v +

1

2

)
+BvJ(J + 1) , (5.2)

ν0 ≡
ω0

2π
Bv =

h̄2

2mrr20
. (5.3)

The 1/2 in the (v+1/2) term corresponds to the “zero-point energy” – the quantum
vibrator cannot be localized at the potential minimum, and the lowest vibrational
level corresponds to an energy (1/2)h̄ω0 above Vq(r0). The constant Bv is referred
to as the “rotation constant”; the subscript v is because the moment of inertia de-
pends on the vibrational state. Pure vibrational transitions v → v−1 have energy
hν0. Pure rotational transitions J → J−1 have energy hν = 2BvJ

Equation (5.2) is not exact. The potential V (r) is not quadratic, so that the
vibrations are not exactly harmonic. In addition, the molecule is not a rigid rotor:
the moment of inertia I depends on the state of vibration and also on the state of
rotation (in high J states, the molecule gets stretched, resulting in a larger moment
of inertia). Note also that r0 and k depend on which electronic state the molecule

Figure 5.1 Effective internuclear potential for H2 for the ground state X1Σ+
g and the

first two electronic excited states, B1Σ+
u and C1Πu
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Table 5.1 Selected Diatomic Moleculesa

Ground B0/hc b B0/k b r0 d µ c ν0/c b

term ( cm−1) (K) (Å) (D) ( cm−1) Λ-doubling
H2

1Σ+
g 59.335f 85.37 0.741 0 4161 –

CH 2Π1/2,3/2 14.190 20.42 1.120g 1.406g 2733. ν ≈ 3.3GHz

CH+ 1Σ+
0 13.931 20.04 1.131 1.679e 2612. –

OH 2Π3/2,1/2 18.550 26.69 0.9697 1.6676 3570. ν ≈ 1.61GHz

CN 2Σ+
1/2 1.8910 2.721 1.1718 0.557i 2042. –

CO 1Σ+
0 1.9225 2.766 1.1283 0.1098 2170. –

SiO 1Σ+
0 0.7242 1.042 1.5097 3.098 1230. –

CS 1Σ+
0 0.8171 1.175 1.5349 2.001h 1272. –

a Data from Huber & Herzberg (1979) unless otherwise noted.
b E(v, J) ≈ hν0(v + 1

2 ) +B0J(J + 1) [see Eq. (5.2)].
c µ = permanent electric dipole moment. g Kalemos et al. (1999).
d r0 = internuclear separation. h Maroulis et al. (2000).
e Folomeg et al. (1987). i Neogrády et al. (2002).
f Jennings et al. (1984).

appearing in front of the term symbol. The letter X is customarily used to designate
the electronic ground state. The ground terms for a number of diatomic molecules
of astrophysical interest are given in Table 5.1, along with the internuclear separa-
tion r0 and the electric dipole moment µ.

5.1.4 O, P, Q, R, and S Transitions

A diatomic molecule can vibrate (stretch) along the internuclear axis, and it can
rotate around an axis perpendicular to the internuclear axis. The rotational angular
momentum adds (vectorially) to the electronic angular momentum.

The rotational levels of diatomic molecules are specified by a single vibrational
quantum number v and rotational quantum number J . Transitions will change J
by either 0, ±1, or ±2. It is customary to identify transitions by specifying the
upper and lower electronic states, upper and lower vibrational states, and one of the
following: O(Jℓ), P (Jℓ), Q(Jℓ), R(Jℓ), S(Jℓ), where the usage is given in Table
5.2. Thus, for example, a transition from the vℓ = 0, Jℓ = 1 level of the ground
electronic state to the vu=5, Ju=2 level of the first electronic excited state would
be written B–X 5–0 R(1).

Table 5.2 Usage of O, P , Q, R, and S

Designation (Ju−Jℓ) Note
O(Jℓ) −2 Electric quadrupole transition
P (Jℓ) −1 Electric dipole transition
Q(Jℓ) 0 Electric dipole or electric quadrupole; Q(0) is forbidden
R(Jℓ) +1 Electric dipole transition
S(Jℓ) +2 Electric quadrupole transition
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is in: the excited electronic states will have different values of ω0 and Bv than the
ground state.

Each electronic state q therefore supports a vibration–rotation spectrum of en-
ergy levels, with energies Eq(v, J). In Figure 5.2, we show the vibration–rotation
levels of the ground electronic state of H2.

5.1.6 Ortho-H2 and Para-H2

In the case of H2, the electronic wave function is required to be antisymmetric under
exchange of the two electrons. The two protons, just like the electrons, are identical
fermions, and therefore the Pauli exclusion principle antisymmetry requirement
also applies to exchange of the two protons. The protons are spin 1/2 particles –
the two protons together can have total spin 1 (spins parallel) or total spin 0 (spins
antiparallel). Without going into the quantum mechanics, the consequence of the
antisymmetry requirement is that if the protons have spin 0, the rotational quantum
number J must be even; this is referred to as para-H2, with J =0, 2, 4, .... If the
two protons are parallel, with total spin 1, the rotational quantum number J must
be odd: this is referred to as ortho-H2, with J = 1, 3, 5, .... Because the nuclear
spins are only weakly coupled to the electromagnetic field, ortho-H2 and para-H2

behave as almost distinct species, with conversion of ortho to para, or para to ortho,
happening only very slowly.

Figure 5.2 Vibration–rotation energy levels of the ground electronic state of H2 with
J ≤ 29. The (v, J)=(1, 3) level and 1–0S(1) λ = 2.1218µm transition are indicated.

35



44 CHAPTER 5

Because H2 has no permanent electric dipole moment, the vibrational states
and the rotational states radiate very weakly, via the time-variation of the elec-
tric quadrupole moment as the molecule vibrates or rotates. Because the nuclear
spin state does not change, the rovibrational radiative transitions of H2 must have
∆J = 0 or ∆J = ±2 – i.e., ortho→ortho or para→para.

The vibration–rotation emission spectrum of H2 therefore consists of electric
quadrupole transitions. The downward transitions are identified by

vu−vℓ S(Jℓ) if Jℓ = Ju−2 ,

vu−vℓ Q(Jℓ) if Jℓ = Ju ,

vu−vℓ O(Jℓ) if Jℓ = Ju+2 .

For example, 1–0 S(1) refers to the transition (v=1, J=3) → (v=0, J=1). This
transition is indicated in Fig. 5.2.

5.1.7 CO

CO has 2 p electrons contributed by C and 4 p electrons contributed by O; together,
these 6 p electrons fill the 2p subshell, and as a result, the ground electronic state
of CO has zero electronic angular momentum and zero electronic spin: 1Σ+

0 , just
like H2. The reduced mass of CO is (12×16/28) amu ≈ 6.9 amu. The C=O
chemical bond is extremely strong; r0 is unusually small, the spring constant k
is unusually large, and the electric dipole moment (only µ = 0.110D) is unusu-
ally small. The fundamental vibrational frequency corresponds to a wavelength
λ0 = c/ν0 ≈ 4.6µm. (The energy is ∼ 50% of the energy in the H2 funda-
mental frequency.) The fundamental rotational frequency 2B0/h = 115GHz, and
h̄2/Ik ≈ 5.5K (versus 170K for H2). Because the moment of inertia of CO is
much larger than that of H2, the rotational levels of CO are much more closely
spaced than those of H2, and therefore there are many more allowed rotation–
vibration levels.

If µ is the permanent electric dipole moment, the Einstein A coefficient for a
rotational transition J → J−1, radiating a photon with energy h̄ω, is given by

AJ→J−1 =
2

3

ω3

h̄c3
µ2 2J

2J + 1
(5.4)

=
128π3

3h̄

(
B0

hc

)3

µ2 J4

J + 1
2

s−1 (5.5)

=1.07× 10−7 J4

J + 1
2

s−1 (5.6)

=7.16× 10−8 s−1 for J = 1 → 0 . (5.7)
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is in: the excited electronic states will have different values of ω0 and Bv than the
ground state.

Each electronic state q therefore supports a vibration–rotation spectrum of en-
ergy levels, with energies Eq(v, J). In Figure 5.2, we show the vibration–rotation
levels of the ground electronic state of H2.

5.1.6 Ortho-H2 and Para-H2

In the case of H2, the electronic wave function is required to be antisymmetric under
exchange of the two electrons. The two protons, just like the electrons, are identical
fermions, and therefore the Pauli exclusion principle antisymmetry requirement
also applies to exchange of the two protons. The protons are spin 1/2 particles –
the two protons together can have total spin 1 (spins parallel) or total spin 0 (spins
antiparallel). Without going into the quantum mechanics, the consequence of the
antisymmetry requirement is that if the protons have spin 0, the rotational quantum
number J must be even; this is referred to as para-H2, with J =0, 2, 4, .... If the
two protons are parallel, with total spin 1, the rotational quantum number J must
be odd: this is referred to as ortho-H2, with J = 1, 3, 5, .... Because the nuclear
spins are only weakly coupled to the electromagnetic field, ortho-H2 and para-H2

behave as almost distinct species, with conversion of ortho to para, or para to ortho,
happening only very slowly.

Figure 5.2 Vibration–rotation energy levels of the ground electronic state of H2 with
J ≤ 29. The (v, J)=(1, 3) level and 1–0S(1) λ = 2.1218µm transition are indicated.
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Problem 1
• (Rybicki & Lightman problem 4.2)

148 Relativistic CoOarirUree and Kinematics 

and Eq. (4.113) follows. Notice that here it is essential to define the 
emission coefficient in terms of emitted rather than received power. 

It is often convenient to determine the quantities a,,,j,, S, and the like in 
the rest frame of the material. By the above results we can then find them 
in any frame. Because the transformation of Y involves the direction f? of 
the ray, these quantities will not, in general, be isotropic, even when they 
are isotropic in the rest frame. The observed nonisotropy of the cosmic 
microwave background can be used to find the velocity of the earth 
through the background (c.f. Problem 4.13). 

PROBLEMS 

4.1-In astrophysics it is frequently argued that a source of radiation 
which undergoes a fluctuation of duration At must have a physical 
diameter of order D s c A t .  This argument is based on the fact that even if 
all portions of the source undergo a disturbance at the same instant and 
for an infinitesimal period of time, the resulting signal at the observer will 
be smeared out over a time interval Atmin-D/c because of the finite light 
travel time across the source. Suppose, however, that the source is an 
optically thick spherical shell of radius R(t)  that is expanding with relativ- 
istic velocity @-l,y>>l and energized by a stationary point at its center, 
By consideration of relativistic beaming effects show that if the observer 
sees a fluctuation from the shell of duration At at time t, the source may 
actually be of radius 

R <2y2cAt, 

rather than the much smaller limit given by the nonrelativistic considera- 
tions. In the rest frame of the shell surface, each surface element may be 
treated as an isotropic emitter. 

This latter argument has been used to show that the active regions in 
quasars may be much larger than cat-1 light month across, and thus 
avoids much energy being crammed into so small a volume. 

4.2-Suppose that an observer at rest with respect to the fixed distant 
stars sees an isotropic distribution of stars. That is, in any solid angle d!J 
he sees dN = N(d!J2/4n) stars, where N is the total number of stars he can 
see. 

Suppose now that another observer (whose rest frame is K ’ )  is moving at 
a relativistic velocity f l  in the x direction. What is the distribution of stars 
seen by this observer? Specifically, what is the distribution function 

P(B’,+’) such that the number of stars seen by this observer in hs solid 
angle dQ’ is P(B‘,+‘)dQ‘? Check to see that jP(B’,+‘)dQ’= N ,  and check 
that P(B‘,+’) = N / 4 a  for p = 0. In what direction will the stars “bunch up,” 
according to the moving observer? 

4.3 

a. Show that the transformation of acceleration is 

a: 

y3u3 ’ 
a, = - 

where 

024: 

c2 
u = l + - .  

b. If K‘ is the instantaneous rest frame of the particle, show that 

a;, = y3al,, 

a ; = y a , ,  

where a,, and a ,  are the components parallel and perpendicular to the 
direction of u, respectively. 

2 

4.4-A rocket starts out from earth with a constant acceleration of l g  in 
its own frame. After 10 years of its own (proper) time it reverses the 
acceleration, and in 10 more years it is again at rest with respect to the 
earth. After a brief time for exploring, the spacemen retrace their journey 
back to earth, completing the entire trip in 40 years of their own time. 

a. Let t be earth time and x be the position of the rocket as measured 
from earth. Let T be the proper time of the rocket and let p= 
c - ’ d x / d t .  Show that the equation of motion of the rocket during the 
first phase of positive acceleration is 

d2x 
dt 

Y y = g .  
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Problem 2
• (Rybicki & Lightman problem 10.1)

Combined Doppler and Lorentz Profiles 

Quite often an atom shows both a Lorentz profile plus the Doppler effect. 
In these cases we can write the profile as an average of the Lorentz profile 
over the various velocity states of the atom: 

We can write this more compactly using the definition of the Voigt function 

(10.77) 

Then Eq.. (10.76) can be written as 

where 

r a= - 
47rAuD ’ ( 10.79a) 

( I0.79b) 

For small values of a, the center of the line is dominated by the Doppler 
profile, whereas the “wings” are dominated by the Lorentz profile. (See 
problem 10.5). 

PROBLEMS 

10.1 -What radiative transitions are allowed between the fine structure 
levels of a 3P term and those of a 3S term? Draw a diagram showing the 
levels with spacings determined by the Lande interval rule. How many 
spectral lines will be produced, and how will they be spaced relative to one 
another? Consider the different possibilities of 3P being normal or inverted 
and being the upper or lower term. 
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Problem 3
• (Rybicki & Lightman problem 10.2)292 RadiariOe Transitim 

10.2-Which of the following transitions are allowed under L-S cou- 
pling selection rules for electric dipole radiation and which are not? 
Explain which rules, if any, are violated. 

a. 3s 2 ~ , / 2 + + 4 s  2 ~ 1 / 2  

b. 2p 2P, / ,++3d 'D , / ,  

c.  3s3p 3P,+-+3p2 ID, 
d. 2p3p 3 D , t , 3 p 4 d  3F2 

e. 2p2 3 ~ o w 2 p 3 s  3 ~ 0  

f. 3s2p ' P l t t 2 p 3 p  IP, 

g. 2s3p 'P0-3p4d ' P I  

h. 1s' 'So*2s2p ' P I  

i. 2p3p 3 S , t t 2 p 4 d  3D2 

j. 2p3 2 D 3 / 2 t ) 2 p 3  ' D , / ,  

103-Derive Eq. (10.45) for the Lyman-a oscillator strength. 

10.4-Derive Eq. (10.53) for the bound-free cross section, using the 
nonrelativistic Born approximation. 

10.5-Line radiation is emitted from an optically thn, thermal source. 
Assuming that the only broadening mechanisms are Doppler and natural 
broadening, show that the observed half-width of the line is independent of 
the temperature T for T<<T, and increases as the square root of T for 
T>T, ,  where T, is some critical temperature. For the Lyman-a line of 
hydrogen estimate T, in terms of fundamental constants, and give its 
numerical value. 

10.6-Derive the simple dipole selection rule, Eq. (10.40). 

10.7-Derive the profile function, Eq. (10.75), when phase-destroying 
collisions occur with frequency Y , ~ .  

REFERENCES 

Allen, C. W., 1974, Astrophysical Quantities, (Althone Press, London). 
Aller, L. H., 1963, The Atmospheres of the Sun and Stars, (Ronald, New York). 
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Problem 4

Astronomy 501 Spring 2013
Problem Set #3

Due in class: Friday, Feb. 8
Total points: 7+1

1. Kirchhoff Revisited.

(a) [0.5 points] Consider a central spherical blackbody at temperature Tc, surrounded
by a concentric, non-scattering shell that is thermally emitting at Ts. For a slightline
that passes from the central object through the shell, solve for Iν as a function of
τν(s). Write your solution in the form of Iν = Bν(Tc)+∆ν , i.e., find ∆ν = Iν−Bν(Tc).

For Tc > Ts, find Iν and ∆ν in the limits τν ≪ 1, τν ≈ 1, and τν ≫ 1, and comment.
How will these change if Tc < Ts?

(b) [0.5 points] Now consider the case in which the absorption coefficient αν is nonzero
for a narrow region (“line”) centered at ν0 with width ∆ν ≪ ν0. Also let the width
have ∆ν ≪ kTs/h, kTc/h, i.e., the line feature is narrow compared to the frequency
scales over which the Planck spectra change. Using your solution for Iν , explain how
the spectrum Iν will look for Tc > Ts and for Tc < Ts.

In the optical and infrared, the Sun’s spectrum shows a continuum with absorption
lines, but in the UV and X-rays it shows a continuum with emission lines. Interpret
these physically on the basis of your results.

2. The Rosseland Mean and Electron Scattering in the Sun

(a) [0.5 points] For fully ionized hydrogen, free electron scattering has a frequency-
independent cross section σT = 8πe4/3m2

ec
4 = 0.665×10−24 cm2, Find the Rosseland

mean αR absorption coefficient for the case where electron scattering is the only
important extinction process. Also find the Rosseland mean opacity κR if medium
has mass density ρ.

(b) [0.5 points] Use the solar mass and radius to find the mean mass density of the Sun.
For a uniform density, fully-ionized Sun, find the mean free path, in cm. Then find
the optical depth for a photon at the center of the Sun. Finally, find the pathlength
traveled by a photon on its random walk out of the Sun, and the time it takes for the
photon to escape (expressed in a convenient unit, e.g., seconds or months or years).
Comment on the implications of your results.

3. Electromagnetic Radiation and Maxwell’s Equations. In class we looked at plane-wave
solutions to Maxwell’s equations in terms of their Fourier components. This problem is
to show that many of the general properties of electromagnetic plane waves can be found
without going to Fourier space. The results you will find will of course agree with those
we found for each Fourier mode, but make no reference to specific modes and thus apply
generally to any arbitrary wave train.

This problem will also give you a chance to brush up on your vector identities.
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Problem 5
• Light Echoes

3

e2 = −ex sin χ + ey cos χ (6)

Show that for this wave

(I,Q,U, V ) = E2
0 (1, cos 2β cos 2χ, cos 2β sin 2χ, sin 2β). (7)

(b) [0.5 points] Consider a group of N linearly polarized electromagnetic wave, with
polarization angles 2πn/N , n = 0, . . . , N − 1. What is the polarization fraction?

(c) [0.5 points] Consider a beam with Stokes Q = 1, U = 0. What would the Stokes
parameters be if you rotated the beam by 90◦?

Then consider a plane wave with V = 1, Q = U = 0. In what sense does the beam
rotate around the wavevector (and which are you using: the electrical engineering,
or optics, convention)?

6. Bonus Problem: Light Echoes. In class we mentioned light echos as an interesting time-
dependent application of optically thin scattering. Here we will explore this further.

Consider an observer and a transient source, separated by a distance D. Assume the
environment around the source contains scattering sources, possibly inhomogeneous, but
with small optical depth so that at most one scattering event will occur. The unscattered
light will be seen as the transient outburst, and the scattered radiation will be the light
echo.

As seen in the diagram below, at a given time, a point on the echo will be measured at a
projected distance R from the source.

observer
z

r
source

D

R

(a) [0.5 bonus points] If the source is observed a time t after the transient outburst is
seen, show that the scattering sources lie on an ellipse, for which the source and the
observer are each one focus. Also show that the major axis of the ellipse has length
D + ct. Hint: the major axis is also the sum distances from the each focus to any
point on the ellipse.

To identify the location of the scattering source at projected distance R, we must find
its longitudinal distance z from the source (see diagram). Consider the “parabolic”
approximation in which D ≫ r, z,R. Show that in this approximation, we have

z =
R2

2ct
−

ct

2
(8)

which relates z to the observables R and t.

(b) [0.5 bonus points] For the case of SN 1987, the distance is D ≈ 50 kpc. In the
AAT light echo webpage in Lecture 8, there is a link to a series of six images.
Look at the image from t = 913 days after the outburst. Estimate R for the two
circles, and calculate z for each. What is the geometry of the scattering surfaces that
produced the rings? Are they located in front of or behind the supernova?

            

            

            

http://www.aao.gov.au/images/captions/aat066.html,
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