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Schrödinger Equation
• Time-independent Schrödinger equation for an atom with N electrons and nuclear charge (atomic 

number) Z.

where     is the coordinate of the ith electron, with its origin at the nucleus.

The first term contains a kinetic energy operator for the motion of each electron and the Coulomb 
attraction between that electron and the nucleus.

The second term contains the electron-electron Coulomb repulsion term.

The Coulomb repulsion between pairs of electrons means the above equation is not analytically 
soluble, even for the simplest case, the helium atom for which N = 2.
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[Central Field Approximation]
• Even in complete atoms with N electrons it is useful to consider single-electron states.

Self-consistent field approximation: We assume that each electron moves in the potential of the 
nucleus plus the averaged potential due to the other N - 1 electrons.

Central field approximation (or orbital approximation): In addition, when this averaged 
potential is assumed to be spherically symmetric, the force acting on each electron only depends 
on its distance from the nucleus at the center. It provides a useful classification of atomic states 
and also a starting point.

Let us assume that each electron moves in its own (angle-independent) central potential given 
by           . This gives a simplified Schrödinger equation for the motion of each electron:

orbits: The solutions of the above equation are known as orbitals.

Using this approximation, the total energy and the total wave function of the system are given by 
the sum of single electron energies and the product of single electron wave functions, respectively.

However, the wave function ignores the fact that one cannot distinguish between electron i and 
electron j.
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[Indistinguishable Particles]
• Consider a system with two identical particles. We note that it is not the wave function but the 

probability distribution, which is physically observable. This distribution cannot be altered by 
interchanging the particles. This means that

The equation has two possible solutions:

- symmetric solution

- antisymmetric solution

Pauli Principle: Wave functions are antisymmetric with respect to interchange of identical 
Fermions.

Within the central field approximation, a two-electron wave function which obeys the Pauli 
Principle can be written

Pauli exclusion principle: If the two spin-orbitals are the same               , then the total wave 
function is zero, i.e.,                 , and no physical (normalizable) state exists. The Pauli exclusion 
principle is summarized as “No two electrons can occupy the same spin-orbital.”
This exclusion provides the degeneracy pressure which holds up the gravitational collapse of 
white dwarfs and neutron stars.

Ψ(1,2) 2 = Ψ(2,1) 2

Ψ(1,2) = Ψ(2,1)

Ψ(1,2) = −Ψ(2,1)

Ψ(1,2) = 1
2

φa (1)φb (2)−φa (2)φb (1)[ ] = −Ψ(2,1)

φa = φb( )
Ψ(1,2) = 0
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[Electron Configuration]
• The electron configuration is the distribution of electrons of an atom (or molecule) in atomic (or 

molecular) orbitals. Electronic configurations describe electrons as each moving independently in 
an orbital, in an average field created by all other orbitals.

The configuration of an atomic system is defined by specifying the nl values of all the electron 
orbitals:       means x electrons in the orbital defined by n and l. Following the Pauli exclusion 
principle, each orbital labelled nl actually consists of orbitals with 2l+1 different m values, each 
with two possible values of    . Thus the nl orbital can hold a maximum 2(2l+1) electrons.

• Energy ordering:

For a hydrogen-like atom, the energy of the individual orbitals is determined by principal 
quantum number n.

For complex atoms, the degeneracy on the orbital angular momentum quantum number l is lifted. 
This is because electrons in low l orbits ‘penetrate’, i.e., get inside orbitals with lower n-values. 
Penetration by the low l electrons means that they spend some of their time nearer the nucleus 
experiencing an enhanced Coulomb attraction. This lowers their energy relative to higher l 
orbitals which penetrate less or not at all.

The lowest energy or ground state configuration involves filling the atomic orbitals in energy 
order from the lowest energy orbitals upwards.

 E(1s) < E(2s) = E(2p) < E(3s) = E(3p) = E(3d) < E(4s)!

 E(1s) < E(2s) < E(2p) < E(3s) < E(3p) < E(3d) ! E(4s)"

nl x
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• shells, subshells:

Shells correspond with the principal quantum numbers (1, 2, 3, ...). They are labeled 
alphabetically with letters used in the X-ray notation (K, L, M, ...).

Each shell is composed of one or more subshells. The first (K) shell has one subshell, called “1s”; 
The second (L) shell has two subshells, called “2s” and “2p”.

The valence shell is the outermost shell of an atom. A valence electron is an electron that can 
participate in the formation of a chemical bond.

• open shell configuration, closed shell configuration:

the ground state configuration of carbon, which has six electrons:

the ground state configuration of neon atom, which has ten electrons:

A closed shell or sub-shell makes no contribution to the total orbital or spin angular momentum 
(L or S).

• Atomic ions which have the same number of electrons form what are called isoelectronic series.

• Electronically-excited states of atoms usually arise when one of the outermost electrons jumps to 
a higher orbital.

States with two electrons simultaneously excited are possible but are less important. For many 
systems, all of these states are unstable. They have sufficient energy to autoionize by 
spontaneously ejecting an electron.

1s2 2s2 2p2

1s2 2s2 2p6

9



• Negative ions:

Not all atoms can bind an extra electron to form a stable negative ion. H, C and O can bind an 
electron while H and N cannot.

Most negative ions have only one stable level, and so possess no line (‘bound-bound’) spectrum. 
The only possible transitions are continuous bound-free absorption (photoionization).

• The Electrostatic Interaction
The specification of the electron configuration (the n, l vales of all electrons) leaves a great deal 
of unspecified information, since we are not given the values of      and     . In the central field 
approximation all of these states are degenerate.

The exact Hamiltonian is
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[LS coupling]
• LS coupling (Russell-Saunders coupling): Terms and Levels

: splitting of the configurations by the electrostatic interaction.

The individual orbital angular momenta will not remain constant under this interaction, although 
their total               will be constant. Also the sum of the spin angular momenta,               , will be 
constant.

(1) The orbital and spin angular momenta of the electrons are added separately to give the total 
orbital angular momentum and the total electron spin angular momentum. 

The configurations are splitted into terms with particular values of L and S.

As a result of the Pauli Principle, closed shells and sub-shells have both L = 0 and S = 0. This 
means that it is only necessary to consider ‘active’ electrons, those in open or partially-filled 
shells.

(2) These are then added to give               .

Fine-structure splitting: Relativistic effects couple electron orbital angular momentum and 
electron spin to give the so-called fine structure in the energy levels. Inclusion of relativistic 
effects splits the terms into levels according to their J value.

L = li
i
∑ S = si

i
∑

J = L+ S
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• Electronic configuration and energy level splitting

26 Atomic structure

where J is the total angular momentum of all electrons
in the atom with multiplicity or degeneracy 2J + 1. The
total J follows the vector sum: for two electrons, the val-
ues of J range from | j1 + j2| to | j1 − j2|. The states are
denoted as ( ji j2)J . For example, for a (pd) configuration
j1(1 ± 1/2) = 1/2, 3/2, and j2(2 ± 1/2) = 3/2, 5/2;
the states are designated as (1/2 3/2)2,1, (1/2 5/2)3,2,
(3/2 3/2)3,2,1,0, (3/2 5/2)4,3,2,1 (note that the total dis-
crete J = 0 – 4). The J -state also includes the parity
and is expressed as Jπ or, more completely, as (2S+1)LπJ .
The latter designation relates the fine-structure level to the
parent L S term. For each L S term there can be several
fine-structure levels. The total angular magnetic quantum
number Jm runs from −J to J .

Fine-structure levels can be further split into hyperfine
structure when nuclear spin I is added vectorially to J to
yield the quantum state J + I = F. Figure 2.2 shows
the schematics of energy levels beginning with a given
electronic configuration.

For cases where L S coupling is increasingly invalid
because of the importance of relativistic effects, but the
departure from pure L S coupling is not too severe and
full consideration of relativistic effects is not necessary,
an intermediate coupling scheme designated as L S J is
employed. (We discuss later the physical approximations
associated with relativistic effects and appropriate cou-
pling schemes.) In intermediate coupling notation, the
angular momenta l and s of an interacting electron are
added to the total orbital and spin angular momenta, J1
of all other electrons in the following manner,

J1 =
∑

i

l i +
∑

i

si , K = J1 + l, J = K + s,

(2.63)

where s = 1/2. The multiplicity is again 2J + 1, and the
total angular magnetic quantum number Jm runs from−J
to J .

L = I1 + I2
S = s1 + s2

{ni Ii}

J = L + S

F = J + I

LS terms LSJ levels

Configuration Term structure Fine structure Hyperfine
structure

FIGURE 2.2 Electronic configuration and energy level splittings.

An important point to note is that the physical exis-
tence of atomic energy states, as given by the number
of total J -states, must remain the same, regardless of
the coupling schemes. Therefore, the total number of J -
levels

(∑
i ji = J or L + S = J

)
is the same in

intermediate coupling or j j-coupling. A general discus-
sion of the relativistic effects and fine structure is given in
Section 2.13

2.8 Hund’s rules

The physical reason for the variations in subshell structure
of the ground configuration of an atom is the electron–
electron interaction. It determines the energies of the
ground and excited states. We need to consider both the
direct and the exchange potentials in calculating these
energies. Before we describe the atomic theory to ascer-
tain these energies, it is useful to state some empirical
rules. The most common is the Hund’s rules that governs
the spin multiplicity (2S + 1), and orbital L and total J
angular momenta, in that order.

The S-rule states that an L S term with the high-
est spin multiplicity (2S + 1) is the lowest in energy.
This rule is related to the exchange effect, whereby
electrons with like spin spatially avoid one another,
and therefore see less electron–electron repulsion (the
exchange potential, like the attractive nuclear potential,
has a negative sign in the Hamiltonian relative to the
direct electron–electron potential, which is positive). For
example, atoms and ions with open subshell np3 ground
configuration (N I, O II, P I, S II) have the ground state
4So, lower than the other terms 2Do, 2Po of the ground
configuration.

The L-rule states that for states of the same spin mul-
tiplicity the one with the larger total L lies lower, again
owing to less electron repulsion for higher orbital angu-
lar momentum electrons that are farther away from the
nucleus. Hence, in the example of np3 above, the 2Do

term lies lower than the 2Po. Another example is the
ground configuration of O III, which is C-like 2p2 with
the three L S terms 3P, 1D, 1S in that energy order. A more
complex example is Fe II, with the ground 3p63d64s and
the first excited 3p63d7 configurations. The L S terms in
energy order within each configuration are 3d64s (6D, 4D)
and 3d7 (4F, 4P). But the two configurations overlap and
the actual observed energies of these four terms lie in the
order 6D, 4F, 4D, 4P.

The J-rule refers to fine-structure levels L + S = J .
For less than half-filled subshells, the lowest J -level lies
lowest, but for more than half-filled subshells it is the
reverse, that is, the highest J -level lies lowest in energy.

12



• Equivalent and Nonequivalent Electrons
Nonequivalent electrons are those differing in either n or l values, whereas equivalent electrons 
have the same n and l values.

• Parity of the wave function
The parity of the wave function is determined by how the wave function behaves upon inversion. 
The square of the wave function, i.e., the probability distribution of the electrons, must be 
unchanged by the inversion operation.

Even parity states are given by + sign and odd parity states are given by - sign.

The parity arising from a particular configuration can be determined simply by summing the 
orbital angular momentum quantum numbers for each of the electrons.

As closed shells and sub-shells have an even number of electrons, it is only necessary to 
explicitly consider the active electrons.

 Ψ(r1,r2 ,!,rN ) = ±Ψ(−r1,−r2 ,!,−rN )

 (−1)
l1+l2+!lN
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[Spectroscopic Notation]
• Spectroscopic Notation

A state with S = 0 is a ‘singlet’ as 2S+1 = 1.

A state with S = 1/2 is a ‘doublet’

One with S  = 1 is a ‘triplet’

Electron conÖguration and Spectroscopic notation

14



• Fine Structure of Hydrogen

• Splitting in the n = 2 levels of atomic hydrogen. The larger 
splitting is the fine structure and the smaller one the Lamb shift.

According to the Dirac equation, the 2S1/2 and 2P1/2 orbitals 
should have the same energies. However, the interaction 
between the electron and the vacuum (which is not accounted 
for by the Dirac equation) causes a tiny energy shift on2S1/2.

May 17, 2005 14:40 WSPC/SPI-B267: Astronomical Spectroscopy ch03
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Table 3.5. Fine structure effects in the hydrogen atom: splitting of
the nl orbitals due to fine structure effect for l = 0,1, 2, 3. The result-
ing levels are labelled using H atom, and the more general spectro-
scopic notation of terms and levels (see Sec. 4.8).

Configuration l s j H atom Term Level

ns 0 1
2

1
2 ns 1

2
n 2S n 2S 1

2

np 1 1
2

1
2 , 3

2 np 1
2
, np 3

2
n 2Po n 2Po

1
2
, n 2Po

3
2

nd 2 1
2

3
2 , 5

2 nd 3
2
, nd 5

2
n 2D n 2D 3

2
, n 2D 5

2

nf 3 1
2

5
2 , 7

2 nf 5
2
, nf 7

2
n 2Fo n 2Fo

5
2
, n 2Fo

7
2

For hydrogen, s = 1
2 so that, except for the l = 0 case, j = l ± 1

2 (see
Table 3.5). This table labels the resulting levels with the common H-atom
notation nl j, where l is given by its letter designations, s, p, d, etc., and
by spectroscopic notation for which labels of the (2S+1)LJ are used. A full
discussion of spectroscopic notation can be found in Sec. 4.8.

Table 3.5 shows the fine structure levels of the H atom. This table
shows that the states with principal quantum number n = 2 give rise to
three fine-structure levels. In spectroscopic notation, these levels are 2 2S 1

2
,

2 2Po
1
2

and 2 2Po
3
2
.

So far the discussion on H-atom levels has assumed that all those with
the same principal quantum number, n, have the same energy. In other
words, the energy does not depend on l or j. This is not correct: inclusion
of relativistic (or magnetic) effects split these levels according to the total
angular momentum quantum number j. This splitting, called ‘fine struc-
ture’, has been well-studied in the laboratory. An even more subtle effect
called the Lamb shift, which is due to quantum electrodynamics, can also be
observed. Values of these splittings for the n = 2 levels are given in Fig. 3.21.

0.365 cm–1

0.035 cm–1
2 2P1/2

2 2S1/2

2 2P3/2

Fig. 3.21. Splitting in the n = 2 levels of atomic hydrogen. The larger splitting is
the fine structure and the smaller one the Lamb shift.
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.

So far the discussion on H-atom levels has assumed that all those with
the same principal quantum number, n, have the same energy. In other
words, the energy does not depend on l or j. This is not correct: inclusion
of relativistic (or magnetic) effects split these levels according to the total
angular momentum quantum number j. This splitting, called ‘fine struc-
ture’, has been well-studied in the laboratory. An even more subtle effect
called the Lamb shift, which is due to quantum electrodynamics, can also be
observed. Values of these splittings for the n = 2 levels are given in Fig. 3.21.

0.365 cm–1

0.035 cm–1
2 2P1/2

2 2S1/2

2 2P3/2

Fig. 3.21. Splitting in the n = 2 levels of atomic hydrogen. The larger splitting is
the fine structure and the smaller one the Lamb shift. 15



• Hyperfine Structure in the H atom

Coupling the nuclear spin I to the total electron angular momentum J gives the final angular 
momentum F. For hydrogen this means

F = J + I

= J ± 1
2
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For hydrogen, fine-structure and Lamb-shift splittings are too small
to be important for most astronomical applications. The fine structure is,
however, of great importance for complex atoms and will be discussed
further in Chapters 4 and 6.

3.14 Hyperfine Structure in the H Atom
There is one more source of angular momentum in the H atom which has
not yet been included. This is the nuclear spin, i; for H, i = 1

2 . Coupling i
to the total electron angular momentum, j, gives the final angular momen-
tum, f [see Eq. (3.22)]. For H this means

f = j ± 1
2

. (3.26)

The ground state of H is 1s 1
2

or 2S 1
2

and has j = 1
2 . This means that

nuclear spin coupling can split this state into two levels with f = 0 or 1.
There is a very small, 6 × 10−5 eV, splitting between the lower f = 0
and higher f = 1 levels of H caused by magnetic effects. The f = 0 – 1
transition between these levels has a frequency of 1420.406 MHz which
corresponds to a wavelength of 21 cm. The 21 cm line is probably the sin-
gle most important line in astronomy. It is used to map H-atom densities
throughout the ISM (see Fig. 3.22 for example).

Fig. 3.22. 21-cm-line profiles observed with the Very Large Array for two galac-
tic lines of sight recorded as part of a study which constructed a face-on galactic
map of the H II region complexes. The vertical axis of the spectra represents the
observed line-to-continuum intensity, which is equivalent to exp(−τline). [Adapted
from M.A. Kolpak et al., Astrophys. J. 582, 756 (2003).]
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=> 6 terms and 12 levels

May 17, 2005 14:40 WSPC/SPI-B267: Astronomical Spectroscopy ch04
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orbital) angular momentum for all electrons, J. Note that above and else-
where the convention is followed that single electron angular momenta
are represented by lower case letters, l, s, j, etc., and many electron angu-
lar momenta are represented by upper case letters, L, S, J, etc.

There are two coupling schemes or ways of summing the individual
electron angular momenta to give the total angular momentum.

4.7.1 L–S or Russell–Saunders coupling

In Russell–Saunders coupling, the orbital and spin angular momenta
of the electrons are added separately to give the total orbital angular
momentum, L,

L = ∑
i

l i , (4.13)

and the total electron spin angular momentum, S,

S = ∑
i

si . (4.14)

These are then added to give J

J = L + S . (4.15)

It is useful to remember that, as a result of the Pauli Principle, closed shells
and sub-shells, such as ls2 or 2p6, have both L = 0 and S = 0. This means
that it is only necessary to consider ‘active’ electrons, those in open or
partially-filled shells. In most cases this means only one or two electrons.
When more than two angular momenta need to be added together, they
should be added in pairs. The result is independent of the order in which
the addition is performed.

Worked Example: Consider O III with the configuration: ls22s22p3d.
1s2 and 2s2 are closed, so contribute no angular momentum.
For the 2p electron l1 = 1 and s1 = 1

2 ;
for the 3d electron l2 = 2 and s2 = 1

2 .
L = l1 + l2 ⇒ L = 1, 2, 3;
S = s1 + s2 ⇒ S = 0, 1.
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Combining these using all possible combinations of L and S, and the rules
of vector addition, gives:

L S J Level
J = L + S ⇒ 1 0 1 1Po

1
1 1 0, 1, 2 3Po

0 , 3Po
1 , 3Po

2
2 0 2 1Do

2
2 1 1, 2, 3 3Do

1 , 3Do
2 , 3Do

3
3 0 3 1Fo

3
3 1 2, 3, 4 3Fo

2 , 3Fo
3 , 3Fo

4 .

Each state of an atom or ion is characterised by a unique combination
of L, S and J, known as a ‘level’, the notation for which is explained in
Sec. 4.8. Thus twelve levels arise from the configuration 1s22s22p3d. Note
that although some values of J appear several times, they all correspond
to distinct states of the ion and it is important to retain them all.

4.7.2 j–j coupling

An alternative scheme for coupling angular momenta is to consider the
total angular momentum, ji, for the ith electron by combining li and si:

j
i
= li + si , (4.16)

and then coupling these j’s together to give the total angular momentum.

J = ∑
i

j
i
. (4.17)

This scheme is known as j– j coupling. Again J = 0 for closed shells and
sub-shells.

Worked Example: Again consider O III with configuration ls22s22p3d.
For the 2p electron l1 = 1 and s1 = 1

2 , j
1
= l1 + s1, giving j1 = 1

2 , 3
2 ;

for the 3d electron l2 = 2 and s2 = 1
2 , j

2
= l2 + s2, giving j2 = 3

2 , 5
2 .

Combining these gives:

j1 j2 J
J = j

1
+ j

2
⇒ 1

2
3
2 1, 2

3
2

3
2 0, 1, 2, 3

1
2

5
2 2, 3

3
2

5
2 1, 2, 3, 4
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Combining these using all possible combinations of L and S, and the rules
of vector addition, gives:

L S J Level
J = L + S ⇒ 1 0 1 1Po

1
1 1 0, 1, 2 3Po

0 , 3Po
1 , 3Po

2
2 0 2 1Do

2
2 1 1, 2, 3 3Do

1 , 3Do
2 , 3Do

3
3 0 3 1Fo

3
3 1 2, 3, 4 3Fo

2 , 3Fo
3 , 3Fo

4 .

Each state of an atom or ion is characterised by a unique combination
of L, S and J, known as a ‘level’, the notation for which is explained in
Sec. 4.8. Thus twelve levels arise from the configuration 1s22s22p3d. Note
that although some values of J appear several times, they all correspond
to distinct states of the ion and it is important to retain them all.

4.7.2 j–j coupling

An alternative scheme for coupling angular momenta is to consider the
total angular momentum, ji, for the ith electron by combining li and si:

j
i
= li + si , (4.16)

and then coupling these j’s together to give the total angular momentum.

J = ∑
i

j
i
. (4.17)

This scheme is known as j– j coupling. Again J = 0 for closed shells and
sub-shells.

Worked Example: Again consider O III with configuration ls22s22p3d.
For the 2p electron l1 = 1 and s1 = 1

2 , j
1
= l1 + s1, giving j1 = 1

2 , 3
2 ;

for the 3d electron l2 = 2 and s2 = 1
2 , j

2
= l2 + s2, giving j2 = 3

2 , 5
2 .

Combining these gives:

j1 j2 J
J = j

1
+ j

2
⇒ 1

2
3
2 1, 2

3
2

3
2 0, 1, 2, 3

1
2

5
2 2, 3

3
2

5
2 1, 2, 3, 4

• O III
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• Helium
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4.9 Parity of the Wavefunction
The parity of the wavefunction is determined by how the wavefunc-
tion behaves upon inversion. Inversion is the operation of reflecting the
wavefunction through the origin, here the atomic nucleus, and is equiv-
alent to replacing vector r with −r. Given the symmetry of the atom, the
square of the wavefunction, i.e. the probability distribution of the elec-
trons, must be unchanged by this operation. Neglecting spin, this means

ψ(r1, r2, . . . , rN) = ±ψ(−r1, − r2, . . . , − rN) . (4.18)

Even parity states are given by +ψ and odd parity states are given by −ψ.
In practice the parity of all terms and levels arising from a particular

configuration can be determined simply by summing the orbital angular
momentum quantum numbers for each of the electrons. With this simple
rule, the parity is given by

(−1)l1+l2+···lN . (4.19)

As closed shells and sub-shells have an even number of electrons, it is
again only necessary to explicitly consider the active electrons.

Thus for the O III configuration ls22s22p3d, it is only necessary to con-
sider the sum l(2p) = 1 and l(3d) = 2. This gives (−1)1+2 = −1, which
explains why all the terms and levels arising from this configuration were
all labelled odd above.

The parity of a configuration is important since it leads to a rigorous
dipole selection rule known as the Laporte rule. The Laporte rule states:

All electric dipole transitions connect states of opposite parity.

In other words (strong) transitions can only link configurations with even
to those with odd parity, and vice versa.

4.10 Terms and Levels in Complex Atoms
A single configuration can lead to several terms. These terms have differ-
ent energies. It is worth considering a few examples.

Example 1: The helium atom.

(1) The ground state is 1s2.
This is a closed shell, with L = 0 and S = 0, hence it gives rise to a
single, even parity term 1S, and level 1S0.
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(2) The first excited configuration is 1s2s.
This has l1 = l2 = 0 and hence L = 0,
but s1 = s2 = 1

2 giving both S = 0 (singlet) or S = 1 (triplet) states. The
energy ordering of atomics states is given by Hund’s rules. Hund’s
first rule governs ordering of terms with different spin multiplicities:

For a given configuration, the state with the maximum spin multiplicity
is lowest in energy.

So the 3S term (3S1 level) is lower in energy than the 1S term (1S0 level).
In practice the splitting between these terms is 0.80 eV.

(3) The next excited configuration is 1s2p, which has odd parity.
This has l1 = 0 and l2 = 1, giving L = 1;
again s1 = s2 = 1

2 , giving both S = 0 and S = 1 terms.
Following the rule above, the 3Po term is lower than the 1Po term,
in this case by 0.25 eV. The 3Po is also split into three levels: 3Po

0 , 3Po
1

and 3Po
2 .

Figure 5.2 depicts the energy levels of helium in a form known as a Gro-
trian diagram. The layout of these diagrams is discussed in Sec. 5.4.

Example 2: The carbon atom.

Start by considering the excited state configuration ls22s22p3p.
It is only necessary to consider the outer two electrons for which:

l1 = 1, s1 = 1
2 ,

l2 = 1, s2 = 1
2 .

These give L = 0, 1, 2 and S = 0, 1, which give rise to the following terms,
all with even parity: 1S, 3S,1P, 3P, 1D and 3D.

Now consider the ground state configuration of carbon ls22s22p2.
This configuration also has l1 = 1, s1 = 1

2 and l2 = 1, s2 = 1
2 .

However the Pauli Principle restricts which terms are allowed. For exam-
ple the term 3D includes the state:

(
l1 = 1, m1 = +1, s1 = 1

2 , s1z = + 1
2

)
(
l2 = 1, m2 = +1, s2 = 1

2 , s2z = + 1
2

)

which is allowed when n1 = 2, n2 = 3, but is forbidden when n1 = 2, n2 = 2
by the Pauli exclusion principle since both electrons have precisely the
same quantum numbers.
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(2) The first excited configuration is 1s2s.
This has l1 = l2 = 0 and hence L = 0,
but s1 = s2 = 1

2 giving both S = 0 (singlet) or S = 1 (triplet) states. The
energy ordering of atomics states is given by Hund’s rules. Hund’s
first rule governs ordering of terms with different spin multiplicities:

For a given configuration, the state with the maximum spin multiplicity
is lowest in energy.

So the 3S term (3S1 level) is lower in energy than the 1S term (1S0 level).
In practice the splitting between these terms is 0.80 eV.

(3) The next excited configuration is 1s2p, which has odd parity.
This has l1 = 0 and l2 = 1, giving L = 1;
again s1 = s2 = 1

2 , giving both S = 0 and S = 1 terms.
Following the rule above, the 3Po term is lower than the 1Po term,
in this case by 0.25 eV. The 3Po is also split into three levels: 3Po

0 , 3Po
1

and 3Po
2 .

Figure 5.2 depicts the energy levels of helium in a form known as a Gro-
trian diagram. The layout of these diagrams is discussed in Sec. 5.4.

Example 2: The carbon atom.

Start by considering the excited state configuration ls22s22p3p.
It is only necessary to consider the outer two electrons for which:

l1 = 1, s1 = 1
2 ,

l2 = 1, s2 = 1
2 .

These give L = 0, 1, 2 and S = 0, 1, which give rise to the following terms,
all with even parity: 1S, 3S,1P, 3P, 1D and 3D.

Now consider the ground state configuration of carbon ls22s22p2.
This configuration also has l1 = 1, s1 = 1

2 and l2 = 1, s2 = 1
2 .

However the Pauli Principle restricts which terms are allowed. For exam-
ple the term 3D includes the state:

(
l1 = 1, m1 = +1, s1 = 1

2 , s1z = + 1
2

)
(
l2 = 1, m2 = +1, s2 = 1

2 , s2z = + 1
2

)

which is allowed when n1 = 2, n2 = 3, but is forbidden when n1 = 2, n2 = 2
by the Pauli exclusion principle since both electrons have precisely the
same quantum numbers.

(1)

(2)

1S, 3S, 1P, 3P, 1D, 3D→ 1S, 3P, 1D are only valid terms.

• Carbon
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There are general methods of determining which terms are allowed
for a configuration with a multiply occupied open shell [see Bransden and
Joachain (2003) in further reading]. However there is a rule of thumb which
suffices for present purposes. It turns out that for systems with equivalent
electrons, that is, electrons which have the same n and l values, then the
sum L + S for these electrons must be even for the Pauli Principle to be
satisfied.

The ground state configuration of carbon, C I, thus gives terms 1S, 3P
and 1D. The 3P term has the highest spin and is thus the ground state term.
The other two terms have however, the same spin multiplicity, so which is
lower in energy? Hund’s second rule states:

For a given configuration and spin multiplicity, the state with the maximum
orbital angular momentum is the lowest in energy.

In the case of the ground state configuration of carbon, the 1D state
lies 1.42 eV lower in energy than the 1S state, but is 1.26 eV above the
3P state.

The examples above have only considered terms and have neglected
splitting according to J where it arises. This fine-structure splitting
becomes increasingly important for high Z (i.e. heavy) atoms.

The 3P ground state of carbon has L = 1 and S = 1, which lead to
J = 0, 1, 2. Allowed levels are thus 3P0, 3P1 and 3P2.
The energy order of these is given by Hund’s third rule:

The lowest energy is obtained for lowest value of J in the normal case and
for highest J value in the inverted case.

The normal case is a shell which is less than half filled, for example 2p2 as
in carbon. The inverted case is a shell which is more than half full such as
the 2p4 found in the ground state of atomic oxygen, which also has a 3P
ground state.

Thus for carbon one gets the energy order:

3P0 < 3P1 < 3P2 ,

whereas for oxygen, one gets

3P2 < 3P1 < 3P0 .

It should be noted that this situation does not arise for configurations
with half-filled shells since the lowest energy term, the only one for which
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[Hund’s rules]
• Energy ordering: Hund’s rules

(1) S-rule: For a given configuration, the state with the maximum spin multiplicity is lowest in 
energy.

The electrons repel each other, and therefore their mutual electrostatic energy is positive. The 
farther away the electrons get, the lower will be the contribution of the electrostatic energy to the 
total energy.

(2) L-rule: For a given configuration and spin multiplicity, the state with the maximum orbital 
angular momentum is the lowest in energy.

(3) J-rule: The lowest energy is obtained for lowest value of J in the normal case and for highest 
J value in the inverted case.

The normal case is a shell which is less than half filled. The inverted case is a shell which is more 
than half full such as the ground state of atomic oxygen.

• The Hund’s rules are only applicable within LS coupling. They are only rigorous for ground 
states. However, they are almost always useful for determining the energy ordering of excited 
states. The rules show increasing deviations with higher nuclear charge.

3P0 <
3P1 <

3P2 for carbon (1s2 2s2 2p2 )
3P2 <

3P1 <
3P0 for oxygen (1s2 2s2 2p4 )
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[Selection Rules]
• Selection Rules

Laporte rule: All electric dipole transitions connect states of opposite parity.

Resonance line: denote the longest wavelength, dipole-allowed transition arising from the ground 
state of a particular atom or ion.

(1) For electric dipole transitions, Rules 1, 2 and 3 must always be obeyed.

(2) Intercombination lines violate rule 4.

(3) Forbidden lines violate rule 5 and/or 6. Electric quadrupole and magnetic dipole transitions 
are also described as forbidden.
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Table 5.1. Selection rules for atomic spectra. Rules 1, 2 and 3 must always
be obeyed. For electric dipole transitions, intercombination lines violate
rule 4 and forbidden lines violate rule 5 and/or 6. Electric quadrupole and
magnetic dipole transitions are also described as forbidden.

Electric dipole Electric quadrupole Magnetic dipole

1. ∆J = 0, ± 1 ∆J = 0, ± 1, ± 2 ∆J = 0, ± 1
Not J = 0 − 0 Not J = 0 − 0, 1

2 − 1
2 , 0 − 1 Not J = 0− 0

2. ∆MJ = 0, ± 1 ∆MJ = 0, ± 1, ± 2 ∆MJ = 0, ± 1
3. Parity changes Parity unchanged Parity unchanged
4. ∆S = 0 ∆S = 0 ∆S = 0
5. One electron jumps One or no electron jumps No electron jumps

∆n any ∆n any ∆n = 0
∆l = ±1 ∆l = 0, ± 2 ∆l = 0

6. ∆L = 0, ± 1 ∆L = 0, ± 1, ± 2 ∆L = 0
Not L = 0 − 0 Not L = 0 − 0, 0 − 1

lifetime of this state. Actually, the situation is more subtle than this. The 3Po

term splits into three levels: 3Po
0 , 3Po

1 and 3Po
2 . The electric dipole intercom-

bination line at 1908.7 Å is actually 1S0 – 3Po
1 . It has an A value of 114 s−1.

The transition 1S0 – 3Po
2 , which occurs at 1906.7 Å, is completely for-

bidden by dipole selection rules as ∆J = 2. It only occurs via a very weak
magnet quadrupole transition. The 1906.7 Å line is 105 times weaker than
the already-weak line at 1908.7 Å; it has an A value of 0.0052 s−1. These
two lines can be used to give information on the electron density, as dis-
cussed in Sec. 7.1. Finally the transition 1S0 – 3Po

0 is a J = 0 – 0 transition,
which is completely forbidden by both dipole and quadrupole selection
rules. This transition is not observed.

Electric dipole transitions which violate the propensity rules 5 and/or
6 are called forbidden transitions. These are labelled by square brackets.
For example,

1906.7 Å [C III] 2s2 1S0 – 2s2p 3Po
2 ;

322.57 Å [C III] 2s2 1S0 – 2p3s 1Po
2 ;

are both forbidden lines of C2+. The former is a magnetic transition while
the latter is an electric dipole transition involving the movement of two
electrons. Forbidden transitions are generally weaker than intercombina-
tion lines.
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occur. Specifically, the transitions 2s – 3p, 2p – 3s and 2p – 3d are allowed
whereas the transitions 2s – 3s, 2p – 3p and 2s – 3d are not allowed.

If fine structure effects are considered, then the selection rules can
give further constraints. Considering only the Hα transitions designated
allowed above, the selection rule on j shows that

2s 1
2

– 3p 1
2

is allowed;
– 3p 3

2
is allowed;

2p 1
2

– 3d 5
2

is not allowed;
– 3s 1

2
is allowed;

– 3d 3
2

is allowed;
2p 3

2
– 3s 1

2
is allowed;

– 3d 3
2

is allowed;
– 3d 5

2
is allowed .

3.16 Hydrogen in Nebulae
Hydrogen atom emissions in H II regions and planetary nebulae are very
similar but the latter are generally brighter, which means that more weak
line emissions can be observed. In particular, lines belonging to the Balmer
series are often seen strongly in emission. Indeed, the characteristic red
colour seen in many nebulae comes from Hα.

Balmer or other spectral series are obtained from excited atoms spon-
taneously emitting photons. Every excited state has a half-life τ , similar to
that encountered in radioactive decay, which is related to the strength of
emission. Thus excited states which decay only by weak line emission are
long-lived and those which decay via strong transitions are short-lived.
However, most excited states can emit to more than one other state.

The lifetime of excited state i is given by

τi =

(

∑
j

Ai j

)−1

, (3.27)

where Ai j is the Einstein A coefficient (see Sec. 2.2).
Lifetimes for allowed atomic transitions are short, perhaps a few times

10−9 s. Table 3.6 gives some examples for the H atom. A glaring exception
in Table 3.6 is the lifetime of the 2s level of H. This state has a lifetime of
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Table 3.6. Lifetimes, τ , for decay by spontaneous emission for
low-lying excited states of the hydrogen atom.

Level 2s 2p 3s 3p 3d
τ/s 0.14 1.6× 10−9 1.6 × 10−7 5.4× 10−9 2.3× 10−7

1s

2s

Fig. 3.23. Decay of the metastable 2s state of hydrogen giving two continuum
photons.

∼ 0.14 s, i.e. it lives 108 times longer than the 2p state. This is because the
transition 2s → 1s is strongly forbidden. The 2s state is metastable which
means that on the atomic scale, it is long-lived.

So how does the 2s state decay? By the process of two-photon emis-
sion, which is an inefficient process and in this case has an Einstein A
coefficient of 7 s−1 which can be compared to A(2p → 1s) = 6.3× 108 s−1.
The combined energy of the photons emitted must correspond to the
energy difference E(2s) − E(1s) but the photons themselves can take any
energy within this constraint (see Fig. 3.23). The photons thus appear as
continuous emission radiation. Indeed the two-photon decay of the H 2s
state is responsible for approximately one half the continuum emission
observed from H II regions.

Problems
3.1 Give an expression for the energy levels of the hydrogen atom in terms

of the Rydberg constant RH. Assuming a value RH = 109677.58 cm−1,
derive a wavenumber for the Lyα transition of atomic hydrogen
in cm−1. Explain why the Rydberg constant, R∞ = 109737.31cm−1,
is more appropriate than RH for a heavy one-electron atom. Hence
obtain an estimate for the wavenumber of the Lyα transition of
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occur. Specifically, the transitions 2s – 3p, 2p – 3s and 2p – 3d are allowed
whereas the transitions 2s – 3s, 2p – 3p and 2s – 3d are not allowed.

If fine structure effects are considered, then the selection rules can
give further constraints. Considering only the Hα transitions designated
allowed above, the selection rule on j shows that

2s 1
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– 3p 1
2

is allowed;
– 3p 3

2
is allowed;

2p 1
2

– 3d 5
2

is not allowed;
– 3s 1

2
is allowed;

– 3d 3
2

is allowed;
2p 3

2
– 3s 1

2
is allowed;

– 3d 3
2

is allowed;
– 3d 5

2
is allowed .

3.16 Hydrogen in Nebulae
Hydrogen atom emissions in H II regions and planetary nebulae are very
similar but the latter are generally brighter, which means that more weak
line emissions can be observed. In particular, lines belonging to the Balmer
series are often seen strongly in emission. Indeed, the characteristic red
colour seen in many nebulae comes from Hα.

Balmer or other spectral series are obtained from excited atoms spon-
taneously emitting photons. Every excited state has a half-life τ , similar to
that encountered in radioactive decay, which is related to the strength of
emission. Thus excited states which decay only by weak line emission are
long-lived and those which decay via strong transitions are short-lived.
However, most excited states can emit to more than one other state.

The lifetime of excited state i is given by

τi =

(

∑
j

Ai j

)−1

, (3.27)

where Ai j is the Einstein A coefficient (see Sec. 2.2).
Lifetimes for allowed atomic transitions are short, perhaps a few times

10−9 s. Table 3.6 gives some examples for the H atom. A glaring exception
in Table 3.6 is the lifetime of the 2s level of H. This state has a lifetime of
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occur. Specifically, the transitions 2s – 3p, 2p – 3s and 2p – 3d are allowed
whereas the transitions 2s – 3s, 2p – 3p and 2s – 3d are not allowed.

If fine structure effects are considered, then the selection rules can
give further constraints. Considering only the Hα transitions designated
allowed above, the selection rule on j shows that
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Hydrogen atom emissions in H II regions and planetary nebulae are very
similar but the latter are generally brighter, which means that more weak
line emissions can be observed. In particular, lines belonging to the Balmer
series are often seen strongly in emission. Indeed, the characteristic red
colour seen in many nebulae comes from Hα.

Balmer or other spectral series are obtained from excited atoms spon-
taneously emitting photons. Every excited state has a half-life τ , similar to
that encountered in radioactive decay, which is related to the strength of
emission. Thus excited states which decay only by weak line emission are
long-lived and those which decay via strong transitions are short-lived.
However, most excited states can emit to more than one other state.

The lifetime of excited state i is given by

τi =

(

∑
j

Ai j

)−1

, (3.27)

where Ai j is the Einstein A coefficient (see Sec. 2.2).
Lifetimes for allowed atomic transitions are short, perhaps a few times

10−9 s. Table 3.6 gives some examples for the H atom. A glaring exception
in Table 3.6 is the lifetime of the 2s level of H. This state has a lifetime of
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Table 3.6. Lifetimes, τ , for decay by spontaneous emission for
low-lying excited states of the hydrogen atom.

Level 2s 2p 3s 3p 3d
τ/s 0.14 1.6× 10−9 1.6 × 10−7 5.4× 10−9 2.3× 10−7

1s

2s

Fig. 3.23. Decay of the metastable 2s state of hydrogen giving two continuum
photons.

∼ 0.14 s, i.e. it lives 108 times longer than the 2p state. This is because the
transition 2s → 1s is strongly forbidden. The 2s state is metastable which
means that on the atomic scale, it is long-lived.

So how does the 2s state decay? By the process of two-photon emis-
sion, which is an inefficient process and in this case has an Einstein A
coefficient of 7 s−1 which can be compared to A(2p → 1s) = 6.3× 108 s−1.
The combined energy of the photons emitted must correspond to the
energy difference E(2s) − E(1s) but the photons themselves can take any
energy within this constraint (see Fig. 3.23). The photons thus appear as
continuous emission radiation. Indeed the two-photon decay of the H 2s
state is responsible for approximately one half the continuum emission
observed from H II regions.

Problems
3.1 Give an expression for the energy levels of the hydrogen atom in terms

of the Rydberg constant RH. Assuming a value RH = 109677.58 cm−1,
derive a wavenumber for the Lyα transition of atomic hydrogen
in cm−1. Explain why the Rydberg constant, R∞ = 109737.31 cm−1,
is more appropriate than RH for a heavy one-electron atom. Hence
obtain an estimate for the wavenumber of the Lyα transition of
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occur. Specifically, the transitions 2s – 3p, 2p – 3s and 2p – 3d are allowed
whereas the transitions 2s – 3s, 2p – 3p and 2s – 3d are not allowed.

If fine structure effects are considered, then the selection rules can
give further constraints. Considering only the Hα transitions designated
allowed above, the selection rule on j shows that

2s 1
2

– 3p 1
2

is allowed;
– 3p 3

2
is allowed;

2p 1
2

– 3d 5
2

is not allowed;
– 3s 1

2
is allowed;

– 3d 3
2

is allowed;
2p 3

2
– 3s 1

2
is allowed;

– 3d 3
2

is allowed;
– 3d 5

2
is allowed .

3.16 Hydrogen in Nebulae
Hydrogen atom emissions in H II regions and planetary nebulae are very
similar but the latter are generally brighter, which means that more weak
line emissions can be observed. In particular, lines belonging to the Balmer
series are often seen strongly in emission. Indeed, the characteristic red
colour seen in many nebulae comes from Hα.

Balmer or other spectral series are obtained from excited atoms spon-
taneously emitting photons. Every excited state has a half-life τ , similar to
that encountered in radioactive decay, which is related to the strength of
emission. Thus excited states which decay only by weak line emission are
long-lived and those which decay via strong transitions are short-lived.
However, most excited states can emit to more than one other state.

The lifetime of excited state i is given by

τi =

(

∑
j

Ai j

)−1

, (3.27)

where Ai j is the Einstein A coefficient (see Sec. 2.2).
Lifetimes for allowed atomic transitions are short, perhaps a few times

10−9 s. Table 3.6 gives some examples for the H atom. A glaring exception
in Table 3.6 is the lifetime of the 2s level of H. This state has a lifetime of
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• Helium (Grotrian diagram)
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• Sodium (Na)

Sodium has Z = 11 and a ground state configuration of                     .
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C H A P T E R S I X

ALKALI ATOMS

Lithium, sodium, potassium and rubidium all have ground state electronic
structures which consist of one electron in an s orbital outside a closed
shell. This single ‘optically active’ electron gives these atoms, the alkali
metals, similar chemical behaviour and fairly simple spectra. Even so, the
presence of the inner or core electrons lead to a number of complications
which are not present in the spectrum of simple one-electron atoms.

6.1 Sodium
Sodium, Na, has Z = 11 and a ground state configuration of 1s22s22p63s1.
If the outer 3s electron was completely screened then it would feel an effec-
tive nuclear charge Zeff = 11− 10 = 1 and its energy levels would obey the
Rydberg formula. In practice, the 3s electron penetrates and reduces the
effective quantum number of the electron giving a revised formula:

Enl = −R∞
Z2

eff
(n − µnl)2 , (6.1)

where µnl is the quantum defect. The quantum defect formula was origi-
nally proposed by Rydberg. Unlike his hydrogenic formula, Eq. (3.9), this
depends on l as the degree of electron penetration is l-dependent: in par-
ticular, electrons with low l penetrate more and hence have lower energy.
An advantage of this form is that usually µnl only depends weakly on n,
allowing values of the quantum defect to be transfered between states with
different n but the same l. Table 6.1 gives values of the quantum defect for
low-lying states of sodium. Note the µ43 ≈ 0 means that there is effectively
no penetration for f electrons; this is also true for electrons with l greater

81
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Table 6.1. Quantum defects µnl for sodium.

l n = 3 n = 4 n = 5 n = 6 n = ∞

0 s 1.373 1.357 1.353 1.351 1.348
1 p 0.883 0.867 0.862 0.857 0.855
2 d 0.012 0.013 0.014 0.014 0.015
3 f — 0.000 0.000 0.000 0.000
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Fig. 6.1. Grotrian diagram for sodium. Transitions are labelled with more than
one wavelength due to the effects of fine structure.

than 3. Use of the quantum defects for sodium gives a hydrogen-like level
structure with splitting on l (and J) see Fig. 6.1.

Worked Example: The spectrum of S VI, sodium-like sulphur, shows a
series of ns – 3p transitions with the series limit at 604310 cm−1. The first
two transitions in this series lie at 257109 cm−1 and 398238 cm−1. Estimate
where the third transition in the series should lie.
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3 2P3/2

3 2P

3 2P1/2

Term

17.2 cm-1

J=3/2, L=1, S=1/2

J=1/2, L=1, S=1/2

∆E = +A/2

∆E = -A

Level

Fig. 6.3. Spin-orbit effects in the 3 2P term of sodium. ∆E gives the shift of the
level relative to the term.

Worked Example 1: The Sodium D Lines.
The transitions 3 2Po

1
2 , 3

2
→ 3 2S 1

2
in Na I lie in the orange part of the visible

spectrum. The 3p (3 2P) term in sodium is split by spin-orbit interaction,
as given in Fig. 6.3.

The sodium D lines are so called because they were so labelled by
Fraunhofer in his original solar spectrum (see Fig. 1.1). However, the D line
is actually a doublet and the components are usually labelled:

D2 5890 Å 3p – 3s 3 2P 3
2

– 3 2S 1
2

,

D1 5896 Å 3p – 3s 3 2P 1
2

– 3 2S 1
2

.

Worked Example 2: The ground state of carbon.
The ground state of carbon has the term 3P (see Sec. 4.10), and levels given
by J = 0,1, 2. The spin-orbit terms are evaluated in Table 6.3. As A is pos-
itive for C I, this gives the energy ordering 3P2 > 3P1 > 3P0. Figure 6.4
illustrates the observed splittings.

It can be seen from Fig. 6.4 that the splittings are not exactly in the 2:1
ratio implied by the values in Table 6.3. This is because the treatment given
above is highly simplified. There are many other small (magnetic) interac-
tions which need to be considered in a full treatment. However, for low
Z atoms and ions, the splitting between the levels approximately follow
the intervals given by Eq. (6.13) or what is called the Landé interval rule.

Table 6.3. Spin-orbit interaction terms in the ground
state 3P term of the carbon atom.

Level L S J 1
2 [J(J + 1) − L(L + 1) − S(S + 1)]

3P2 1 1 2 +1
3P1 1 1 1 −1
3P0 1 1 0 −2

Na D lines:

May 17, 2005 14:40 WSPC/SPI-B267: Astronomical Spectroscopy ch06

90 Astronomical Spectroscopy

reproduced in Fig. 6.6 which implies that the lines are optically thin in the
Sun. The sodium D lines are also observed in absorption against starlight
in the interstellar medium. The D lines are usually very saturated in such
spectra.

Fig. 6.6. A solar spectrum reflected from the Moon just before a lunar
eclipse taken at the University of London Observatory. (S.J. Boyle, private
communication.)

D2 D1

g =  4 

g = 2

g = 2 

32P3/2

5896 Å  5890 Å  

o

32P1/2

32S1/2

o

Fig. 6.7. The sodium D lines, g = 2J + 1, give the statistical weight of each level.
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than the D lines, A(3s – 4p) = 2.8× 106 s−1, compared to A(3s – 3p) = 6.2×
107 s−1. This means that the 3s – 4p doublet can be used when D lines are
saturated. However they lie in a difficult spectral region where there are
many telluric (i.e. atmospheric) features due to ozone.

Higher transitions of sodium are often also observed and provide
important spectral markers in the atmosphere of cool stars. Figure 6.9 shows
the spectrum of an L-subdwarf star, a cool star with a mass about 8% of our
Sun. Absorption features due to Na I, K I and Rb I are clearly visible in the
spectrum along with much more complicated molecular features.

All the alkali metal features appear to be doublets. In fact the Na I

absorption features arise from a triplet 3p – 3d transition:

8183.26 Å 3 2Po
1
2

– 3 2D 3
2

;

8194.79 Å 3 2Po
3
2

– 3 2D 3
2

;

8194.82 Å 3 2Po
3
2

– 3 2D 5
2
.

Fig. 6.9. Spectrum of the L-subdwarf star LSR 1610–0400 showing clear spectral
features due to Na I, K I and Rb I as well as diatomic molecules CaH, TiO, CrH and
FeH, and water. [Reproduced from S. Lépine, R.M. Rich and M.M. Shara, Astrophys.
J. 591, L49 (2003).]

Na I absorption:
(from triple 3p-3d)
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[Notations]
2.2 Introduction to Spectroscopy

1. Notations for Spectral Emission Lines and for Ions

(a) There is considerable confusion about the di§erence between these two ways of

referring to a spectrum or ion, for example C III or C
+2
. These have very deÖnite

di§erent physical meanings and cannot be used interchangeably.

(b) C
+2
is a baryon and C III is a set of photons.

(c) C
+2
refers to carbon with two electrons removed, so that it is doubly ionized, with

a net charge of +2.

(d) C III is the spectrum produced by carbon with two electrons removed. The C III

spectrum will be produced by impact excitation of C
+2

(C
+2

+ e
! !! C

+2
* +

e
! !! C

+2
+e
!
+ h") or by recombination of C+3 (C+3 + e! !! C

+2
+ h").

So, depending on how the spectrum is formed, C III may be emitted by C
+2

or

C
+3
.

(e) There is no ambiguity in absorption line studies - only C
+2

can produce a C III

absorption line. This had caused many people to think that C III refers to the

matter rather than the spectrum. But this notation is ambiguous in the case of

emission lines.
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Figure 18.1 Energy levels for temperature diagnostic 2p2 ions N II and O III. Transi-
tions are labeled by vacuum wavelength (Å).

18.1 Temperature Diagnostics: Collisionally Excited Optical/UV Lines

18.1.1 np2 and np4 Ions

Atoms or ions with six electrons have 2p2 as their lowest configuration: the ground
state term is 3P, and the first two excited terms are 1D and 1S. If the 1S term is
at a low enough energy (E/k <∼ 70, 000K), so that the rate for collisional exci-
tation in gas with T ≈ 104 K is not prohibitively slow, and the abundance of the
ion itself is not too low, then the ion can produce observable line emission from
both the 1D and 1S levels. Because these levels are at very different energies, the
relative strengths of the emission lines will be very sensitive to the temperature; the
measured intensity ratio can be used to determine the temperature in the nebula.

Candidate 2p2 ions are C I, N II, O III, F IV, Ne V, and so on. C I is easily pho-
toionized, and will have very low abundance in an H II region. The ionization
potentials of F IV, Ne V, and so on exceed 54.4 eV, and we do not expect such high
ionization stages to be abundant in H II regions excited by main-sequence stars with
effective temperatures kTeff <∼ 5 eV. This leaves N II and O III as the only 2p2 ions
that will be available in normal H II regions.1

Systems with eight electrons will have 2p4 configurations that will also have 1D
and 1S as the first two excited terms. For O I, F II, and Ne III, the 1S term is at
E/k < 70, 000K.

1F IV and Ne V may be present in planetary nebulae and active galactic nuclei, where the ionizing
radiation is harder (with significant power above 54.4 eV).
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line ratios may not be suitable for temperature determination when the intensity
I(1D2 → 1S0) <∼ 10−3I(1S0 → 3PJ).

18.1.2 np3 Ions

Atoms or ions with seven electrons have 1s22s22p3 as their lowest configura-
tion: the ground term is 4S o

3/2, and the first two excited terms are 2D o
3/2,5/2 and

2P o
1/2,3/2. Candidate ions are N I, O II, F III, Ne IV, and so on. N I will be pho-

toionized in H II regions, leaving O II, F III, and Ne IV as the 2p3 ions suitable for
observation in H II regions.

Atoms or ions with 15 electrons have 1s22s22p63s23p3 as their lowest configu-
ration. Just as for 2p3, the ground term is 4S o

3/2, and the first two excited terms are
2D o

3/2,5/2 and 2P o
1/2,3/2. Candidate ions are P I, S II, Cl III, and Ar IV. P I is easily

photoionized, leaving S II, Cl III, and Ar IV as the 3p3 ions that will be present in
regions with hν > 13.6 eV radiation extending possibly up to 54.4 eV.

The ratio of the intensities of lines emitted by the 2P o term to lines from the 2D o

term is temperature-sensitive. Figure 18.2 shows [O II](7322+7332)/(3730+3727)
and [S II](6718+6733)/(4070+4077) as functions of temperature. For these two

Figure 18.3 First five energy levels of the 2p3 ion O II, and the 3p3 ions S II and Ar IV.
Transitions are labeled by wavelength in vacuo.
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• BPT diagram

Baldwin, Phillips & Terlevich (1981, PASP, 93, 5)

218 CHAPTER 18

Figure 18.7 The so-called “BPT” diagram (Baldwin et al. 1981) showing
[O III]5008/Hβ vs [N II]6585/Hα. The “reddening vector” shows the displacement
on the plot due to reddening by Milky Way dust with AV = 10 mag – it is clear that
the BPT diagram is almost completely unaffected by reddening. (a) Solid curves show
emission ratios calculated for gas with solar abundances, for three gas temperatures.
Along each curve the oxygen and nitrogen vary from singly ionized at the bottom, to
doubly ionized at the upper left. (b) Line ratios for 122514 galaxies in SDSS DR7 with
S/N> 5. The curve labeled K03 is the boundary proposed by Kauffmann et al. (2003)
to separate star-forming galaxies from AGN. Eq. (18.14) shows an improved boundary.
70.0% of the galaxies fall in the star-forming region defined by Eq. 18.14. 12.8% fall
in the AGN region defined by [N II]6585/Hα > 0.6.
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2.3 Atomic processes

1. Ionization

(a) Photoionization and Auger-ionization

(b) Collisional Ionization (direct ionization and excitation-autoionization)

2. Recombination

(a) radiative recombination () photoionization

(b) dielectronic recombination

(c) three-body recombination () direct collisional ionization

3. Charge exchange



4. Excitation and de-excitation

(a) Collisional excitation

(b) Collisional de-excitation

(c) Radiative de-excitation (spontaneous emission)



2.4 Photoionization

Interstellar medium (ISM) is transparent to h� < 13:6 eV photons, but is very opaque to
ionizing photons. In fact, the ISM does not become transparent until h� � 1 keV. Sources
of ionizing photons include massive, hot young stars, hot white dwarfs, and supernova
remnant shocks.

1. From the Outer Shells

(a) Photoionization is the inverse process to radiative recombination.

Ai+ + h� ! A(i+1)+ + e� +�E

(b) If the incoming photon has su¢ cient energy, it may leave the ionized species in an
excited state.

Ai+ + h� ! A
(i+1)+
� + e� +�E

A
(i+1)+
� ! A(i+1)+ + h�1 + h�2 + � � �



2. Inner Shell Photoionization

(a) If the energy of the incoming photon still higher, it becomes possible to remove one
of the inner shell electrons which also results in a change in the electron con�guration
in the excited species. This may be followed by a radiative readjustment back to
the ground state.

(b) However, in this case, Auger ionization becomes more probable. High frequency
photons may eject an inner shell electron from an ion or atom, and the resulting
ion may then �ll the gap in its inner shell with an outer electron, ejecting another
outer electron to remove the energy in a radiationless transition called an Auger
transition. Such a process will produce very energetic electrons which will lose their
energy in heating up the gas.

Ai+ + h� ! A
(i+1)+
�� + e� +�E1;

A
(i+1)+
�� ! A

(i+m+1)+
� +me� +�E2; (radiationless autoionization, m � 1)

A
(i+m+1)+
� ! A(i+m+1)+ + h�1 + h�2 + � � �



2.5 Collisional Ionization

1. Direct collisional ionization: The process whereby an electron strikes an ion A (with
charge i+), with su¢ cient energy to strip out a bound electron:

Ai+ + e� ! A(i+1)+ + 2e� ��E:

2. Excitation-autoionization: At su¢ ciently high electron impact energies, more than one
electron of the target nucleus may be excited, leaving the atom in an unstable state,
which is stabilized by the radiationless ejection of an electron, possibly followed by a
radiative decay of the ionized atom back to its ground state. This process is favored in
heavy elements which have a large number of inner shell electrons and only one or two
electrons in the outer shell.

Ai+ + e� ! Ai+� + e� � E1

Ai+� ! A
(i+1)+
� + e� + E2

A
(i+1)+
� ! Ai+ + h�



3. For example, in collisions of Li-like ions, excitation and autoionization can occur via
excitation of the 1s-electron into states with principal quantum numbers n � 2. After
the decay of a doubly excited state, one has an additional electron in the �nal channel.

Ai+(1s22s) + e� ! Ai+�� (1s2snl) + e� � E1

! A
(i+1)+
� (1s2) + (e� + E2) + (e

� � E1)



2.6 Recombination

1. Radiative recombination

(a) Radiative recombination is the process of capture of an electron by an ion where
the excess energy is radiated away in a photon.

(b) The electron is captured into an excited state. The recombined but still excited ion
radiates several photons in a radiative cascade, as it returns to the ground state:

Ai+ + e� ! A
(i�1)+
� + h�

A
(i�1)+
� ! A(i�1)+ + h�1 + h�2 + h�3 + � � �

The photon in the �rst line represents a recombination continuum (h�) photon.
However, photons (h�1; h�2; h�3) represent quantized transitions and are therefore
termed recombination lines.

(c) The initial capture of the electron in recombination tends to occur into states of
high angular momentum due to the initial orbital angular momentum of the electron
around the ioni. Electrons which are initially in a state of high angular momentum
tend to get trapped into the highest l state consistent with the principal quantum
number.

(d) The total e¤ective recombination rate can be written as the sum of the recombina-



tion rate to each state.

2. Dielectronic recombination

(a) Dielectronic recombination (DR) is a resonant two-step process in which a free
electron is captured by the incident ion into an autoionizing state followed by a
stabilizing radiation decay of the resulting ion in the second step. The DR is often
more important than radiative recombination.

Ai+(1s; : : :) + e� ! A
(i�1)+
�� (n1l1;n2l2):

A
(i�1)+
�� (n1l1;n2l2)! A

(i�1)+
� (n3l3;n2l2) + h�

A
(i�1)+
� (n3l3;n2l2)! A

(i�1)+
� (n3l3;n2l2) + h�1 + h�2 + � � �

(b) The �rst step is a double-electron process, often called dielectronic capture, through
which one free electron is captured and another core electron is simultaneously
excited forming a doubly excited state. One of the electron is in an autoionizing
state, n1l1, and the other is in an excited state, n2l2. In the second step, the ion
in a doubly excited state emits a photon and decays into a stable state below the
ionization limit.

(c) There is a competitive process for the decay of the doubly excited ion. � the
autoionization or Auger decay associated not with the radiative transition but with
a change in ion charge.



2.7 Charge-Exchange

1. During the collision of two ionic species, the charge clouds surrouding each interact,
and it is possible that an electron is exchanged bewteen them.

2. Since, in virtually all di¤use astrophysical plasmas, hydrogen and helium are overwhelm-
ingly the most abundant species, the charge-exchange reactions which are signi�cant
to the ionization balance of the plasma are

A(i+1)+ +H0 � Ai+ +H+ +�E;

A(i+1)+ +He0 � Ai+ +He+ +�E:



2.8 Ionization Equilibrium

1. Collisional Ionization Equilibrium (CIE) or coronal equilibrium

(a) dynamic balance at a given temperature between collisional ionization from the
ground states of the various atoms and ions, and the process of recombination from
the higher ionization stages.

(b) In this equilibrium, e¤ectively, all ions are in their ground state.

2. Photoionization Equilibrium: dynamic balance between photo-ionization and the process
of recombination.

3. Ionization balance under conditions of local thermodynamic equilibrium (LTE)

(a) The ionization equilibrieum in LTE is describted by the Saha equation.

(b) In LTE, the excited states are all populated according to Boltzmann�s law.



2.9 Collisional Excitation

1. Under the conditions of very low density and weak radiation �elds,

(a) The vast majority of the atoms reside in the ground state.
collisional excitation timescale � radiative decay time scale
This condition will remain true even if the excited state has a radiative lifetime of
several second. This is frequently the case for the forbidden transitions observed in
ionized astrophysical plasmas.

(b) �ux of an emission line _ �ux number of collisions
/ product of the number densities of the two colliding species by the probability
that a collision will produce a collisional excitation

(c) If the energy gap between the ground state and the excited state, E12, is much larger
than the mean energy of the colliding species � T , then, because there are few
very energetic collisions, relatively few collisional excitations can occur. Therefore,
the resulting emission line will be very much weaker than when E12 � kT .
=) This gives us the possibility of measuring temperature from the relative strengths
of lines coming from excited levels at di¤erent energies above the ground state.



2. At high enough densities,

(a) The collisional timescales are short.

(b) The population in any upper level is set by the balance between collisional excita-
tion, and the collisional deexcitation out of these levels, and are governed by the
Boltzmann equlibrium.

3. At intermediate densities,

(a) The collisional rates and the radiative decay rates are compatible.

(b) The intensity of an emission line is determined by both the temperature and the
density.

(c) If the temperature is known, the density can be determined from the intensity ratio
of two such lines.



4. Collisional Rate (Two Level Atom)

(a) The collisional cross section is in general varying approximately inversely as the
impact energy (because of the focusing e¤ect of the Coulomb force).

�12 (v) =
�
�a20

�0@ hR
1
2m

2
ev
2

1A 
12
g1

cm2 for
1

2
m2ev

2 > E12

=
�~2

m2ev
2


12
g1

or �12 (E) =
h

8�meE


12
g1

where; a0 =
~2

mee2
= 5:12� 1013 cm, Bohr radius

R =
mee4

4�~3
= 109; 737 cm�1, Rydberg constant

(b) The collision strength 
12 is a function of electron velocity (or energy) but is often
approximately constant near the threshold, g1 is the statistical weight of the lower
level.



(c) Advantage of using the collision strength

i. It removes the primary energy dependence for most atomic transitions.

ii. The symmetry between the upper and the lower states.
Using the principle of detailed balance, which states that in thermodynamic equi-
librium each microscopic process is balanced by its inverse,

nen1v1�12 (v1) f (v1) dv1 = nen2v2�21 (v2) f (v2) dv2;

where v1 and v2 are related by
1
2mev21 =

1
2mev22+E12, and using the Boltzman

equation of thermodynamic equilibrium,

n2
n1
=
g2
g1
exp

�
�E12
kT

�
we derive the following relation

g1v
2
1�12 (v1) = g2v

2
2�21 (v2) ;

and the symmetry of the collision strength between levels


12 = 
21:



(d) Collisional excitation and de-excitation rates
If 
21 is a constant, the total collisional de-excitation rate per unit volume per unit
time is

R21 = nen2q21

= nen2

Z 1
0

v�21 (v) f (v) dv

= nen2

 
2�~4

km2e

!1=2
T�1=2


21
g2
:

= nen2
8:62942� 10�6

T 1=2

21
g2

cm�3s�1;

and the collisional excitation rate per unit volume per unit time is R12 = nen1q12,
where

q12 =
Z 1
vmin

v�12 (v) f (v) dv

=

 
2�~4

km2e

!1=2
T�1=2


12
g1

exp
�
�E12
kT

�
=
g2
g1
q21 exp

�
�E12
kT

�
:



(e) Quantum mechanical sum rule for collision strengths for the case where one term
consists of a single level and the second consists of a multiplet, if either S = 0 or
L = 0,


(SLJ;S0L0J 0) =

�
2J 0 + 1

�
(2S0 + 1) (2L0 + 1)


(SL;S0L0)

Here,
�
2J 0 + 1

�
is the statistical weight of an individual level (or term) in the

multiplet, and
�
2S0 + 1

� �
2L0 + 1

�
is the statistical weight of the multiplet. We

can regard the collision strength as �shared�amongst these levels in proportion to
the statistical weights of the individual levels (gJ = 2J + 1).

i. C-like ions
�
1s22s22p2 ! 1s22s22p2; same electron con�gurations

�
! forbid-

den or intercombination transitions.
ground states (triplet) � 3P0 :3 P1 :3 P2 = 1=9 : 3=9 : 5=9

excited states (singlets) � 1D2;1 S1

ii. Li-like ions
�
1s22s1 ! 1s22p1

�
! resonance transitions

ground state (single) � 2S1=2

excited states (doublet) � 2P3=2 :
2 P1=2 = 2=3 : 1=3



(f) Limiting Cases

i. In the low density limit, the collisional rate between atoms and electrons is much
slower than the radiative deexcitation rate of the excited level. Thus, we can
balance the collisional feeding into level 2 by the rate of radiative transitions
back down to level 1. The collision rate is

R12 = A21n2;

n2 =
nen1q12
A21

;

where A21 is the Einstein coe¢ cient for spontaneous emission. Emission line �ux
is

F21 = E12A21n2 = E12R12

= nen1E12
8:62942� 10�6

T 1=2

 

12
g1

!
exp

�
�E12
kT

�
erg cm�3 s�1

' �n2e�E12T
�1=2

 

12
g1

!
exp

�
�E12
kT

�
For low temperatures, the exponential term dominates. At high temperature, the
T�1=2 term controls the cooling rate.



ii. In high-density limt, the level populations are set by the Boltzman equilibrium,

F21 = E12A21n2

= n1E12A21
g2
g1
exp

�
�E12
kT

�
' �neE12A21

g2
g1
exp

�
�E12
kT

�

iii. Critical density de�ned as the density where the radiative depopulation rate
matches the collisional deexcitation for the excited state,

A21n2 = R21

A21n2 = nen2
�

T 1=2

21
g2

ncrit =
A21g2T

1=2

�
12
cm�3:

At around this density, the line emissivity plotted in log-scale changes slope from
+2 to +1.



5. The Three-Level Atom (Line diagnostics)

(a) Let Cij be the collision rate (Cij = neqij s�1) between any two levels. The
equations of statistical equilibrium for a three level atom are

N1C13 +N2C23 = N3 (C31 + C32 +A32 +A31) ;

N1C12 +N3 (C32 +A32) = N2 (C23 + C21 +A21) ;

N1 +N2 +N3 = 1:

(b) Electron temperature

i. Low-Density Limit; E12 � E23

ii. In this limit, C31 � C32 � 0. Also, because of the increasing threshold energies
to excite each level, N3 � N2 � N1 so that the equations are reduced to

N3 =
N1C13

(A32 +A31)

N2 =
N1C12
A21

:

If we now form the line intensity ratio for the 3! 2 and 2! 1 transitions, we



have

F32
F21

=
E23N3A32
E12N2A21

=
E23A32C13

E12(A32 +A31)C12

=
E23A32q13
E12A31q12

=
E23A32
13
E12A31
12

exp
�
�E23
kT

�
:

provided that A32 is very much less than A31:



(c) Ions in which E23 � E12

i. In low density limit

N1C13 = N3A31;

N1C12 = N2A21;

F31
F21

=
E31A31N3
E21A21N2

=
E31C13
E21C12

� 
31

21

exp
�
�E23
kT

�
� 
31

21

=
g3
g2
:

using the quantum-mechanical sum rule for collision strengths.

ii. In high density limit, the upper levels are populated according to their Bolzmann
ratios,

F31
F21

=
E31A31N3
E21A21N2

� A31g3
A21g2



6. Examples of Line Diagnostics

(a) Density: Choose atom with two levels with almost same excitation energy.

(b) Temperature: Use two levels with di¤erent excitation energy.



Density

Choose atom with two levels with almost same excitation energy.



Temperature

Use two levels with di¤erent excitation energy.




