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[Sunyaev-Zeldovich effect]
• The Sunyaev-Zeldovich effect is the distortion of the blackbody spectrum (T = 2.73 K) of the 

CMB owing to the IC scattering of the CMB photons by the energetic electrons in the galaxy 
clusters.

Thermal SZ effects, where the CMB photons interact with electrons that have high energies due 
to their temperature.

Kinematic SZ effects (Ostriker-Vishniac effect), a second-order effect where the CMB photons 
interact with electrons that have high energies due to their bulk motion (peculiar motion). The 
motions of galaxies and clusters of galaxies relative to the Hubble flow are called peculiar 
velocities. The plasma electrons in the cluster also have this velocity. The energies of the CMB 
photons that scattered by the electrons reflect this motion.

Determinations of the peculiar velocities of clusters enable astronomers to map out the growth of 
large-scale structure in the universe. This topic is fundamental importance, and the kinetic SZ 
effect is a promising method for approaching it.
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- Thermal SZ effect
• The net effect of the IC scattering on the photon 

spectrum is obtained by multiplying the photon 
number spectrum by the kernel                and 
integrating over the spectrum.

The net effect is that the BB spectrum is shifted 
to the right and distorted.

Observations of the CMB are most easily carried 
out in the low-frequency Rayleigh-Jeans region 
of the spectrum                      .

Measurement of the CMB temperature as a 
function of position on the sky would thus 
exhibit antenna temperature dips in the 
directions of clusters that contain hot plasmas.

Note that the scattered spectrum is not a BB 
spectrum. The effect temperature increases. But, 
the total number of photons detected in a given 
time over the entire spectrum remains constant.
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Fig. 9.7: Sunyaev–Zeldovich effect. (a) Scattering of CMB photons in a cloud of plasma. The cloud
does not affect the number of photons observed. In reality, only a small fraction of the observed
CMB photons from the direction of a cluster are scattered by cluster electrons. (b) Distribution
of scattered photon energies for initial monochromatic beam and kTe = 5.1 keV. (c) Sketch of
unscattered blackbody (dark line) and singly scattered (light line) spectra. The frequency shifts are
to the right, and the shape is distorted. The shift is drawn for the unrealistically high value of the
parameter y = kTet /mc2 = 0.15. (d) Antenna temperature as a function of position on the sky for
radio measurements in the Rayleigh–Jeans (low-frequency) portion of the spectrum. [(b,c) after
R. Sunyaev and Y. Zel’dovich, in ARAA 18, 537 (1980), with permission]

A head-on collision between a low-energy CMB photon and an energetic electron will
result in the photon’s gaining energy. An overtaking collision (a photon catching an electron)
will result in its losing energy. In this nonrelativistic case, these effects will cancel to first
order in v/c. Examination of the Doppler shifts in these collisions, however, indicates that
there is a net fractional photon frequency gain of order v2/c2; more energy is gained in
head-on collisions than is lost in overtaking collisions (Prob. 51). Because the energy of
a photon is hn , a fractional frequency increase equals the fractional energy increase. In a
Maxwell–Boltzmann plasma of temperature Te, the average kinetic energy of the electrons
is ⟨mv2/2⟩av = 3kTe/2, and so this gain is of order v2/c2 ≈ 3kTe/mc2.

A proper calculation must take into account the effect on monochromatic (n = n0) photons
of electron scatters averaged over all collision angles and electron speeds of a Maxwellian
distribution. The result, under the assumption that each photon is scattered just once in
electrons of 5.1 keV, is a distribution of photon frequency K(n /n0) that ranges up and down

K (ν /ν0 )

Nscatt (ν ) = N (ν0 )K (ν /ν0 )dν00

∞

∫
(kTe /mc

2 )τ = 0.15

 (hν ≪ kTCMB)

The result of such scatterings for an initial 
blackbody photon spectrum is shown in 
the following figure for the value:
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• Change of the BB temperature

In the Rayleigh-Jeans region,

If the spectrum is shifted parallel to itself on a log-log plot, the fractional frequency change of a 
scattered photon is constant.

Total photon number is conserved:

The properly calculated result is                               .

I (ν ) = 2ν
2

c2
kBTCMB

ε = Δν
ν

= ν ′ −ν
ν

= constant or ν ′ = ν(1+ ε ) dν ′ = dν(1+ ε )

N ′(ν ′)dν ′ = N (ν )dν → I ′(ν ′)
hν ′

dν ′ = I (ν )
hν

dν

I ′(ν ′) = I (ν ) = I ν ′
1+ ε

⎛
⎝⎜

⎞
⎠⎟ =

2ν ′2

c2 (1+ ε )2
kBTCMB

ΔI
I

= I ′ − I
I

= 1
(1+ ε )2

−1 ≈ −2ε = −2 Δν
ν

ΔTCMB
TCMB

= ΔI
I

≈ −2ε = −2 Δν
ν

ε = Δν
ν

= kBTCMB
mc2

τ
ΔTCMB
TCMB

≈ −2 kBTCMB
mc2

τ
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9.5 Sunyaev–Zeldovich effect 349

Fig. 9.9: Interferometric images at 30 GHz of six clusters of galaxies at redshifts ranging from
z = 0.17 to z = 0.89. The solid white contours indicate negative decrements to the CMB. The six
clusters have comparable x-ray luminosities, suggesting similar values of ne and R. The expected
distance independence of the S-Z effect is apparent; the contours reach to similar depths despite
the factor of five range in redshift. [BIMA and OVRA arrays; J. Carlstrom et al., ARAA 40, 643
(2002), with permission]

it to our assumption of uniform density and temperature by

Ix(nx, Te) = C1

4π

g(n, Te)

T 1/2
e

exp(−hnx/kTe)n2
e2R.

(Thermal bremsstrahlung; W m−2 Hz−1 sr−1) (9.37)

Interferometric images at 30 GHz of size clusters 
of galaxies. The solid white contours indicate 
negative decrements to the CMB. (Carlstrom et 
al. 2002, ARAA, 40, 643)

A typical cluster have
an average electron density of                           ,
a core radius of                                       ,
and an electron temperature of                    .

A typical optical depth is thus

The expected antenna temperature change is

~ 2.5 ×10−3 cm-3

Rc ~10
24 cm (~ 320 kpc)

kBTe ≈ 5 keV

τ ≈ 3σ T neRc ≈ 0.005

ΔTCMB
TCMB

≈ −1×10−4

ΔTCMB ≈ −0.3 mK for TCMB = 2.7 K

This effect has been measured in dozens of
clusters.
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- Hubble Constant
• A value of the Hubble constant is obtained for a given galaxy only if one has independent measures 

of a recession speed    and a distance d of a galaxy.

Recession speed is readily obtained from the spectral redshift

Distance:
X-ray observations:

CMB decrement:

The radio and X-ray measurements yield absolute values of the electron density      and cluster radius 
R without a priori knowledge of the cluster distance.

Imaging of the cluster in the radio or X-ray band yields the angular size of the cluster    . Then the 
distance d to the cluster is obtained by

The SZ effect (at radio frequencies) in conjunction with X-ray measurements can give distances to 
clusters of galaxies.

 
H0 =

v
d

I (ν ,Te ) = C
g(ν ,Te )
Te
1/2 exp(−hν / kTe )ne

2 2R

ΔTCMB
TCMB

= −2 kTe
mc2

τ = −2 kTe
mc2

(σ T ne2R)

ne

θ

d = R
θ

 v
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[Kompaneets Equation]
• The Kompaneets equation describes the time evolution of the distribution of photon occupancies 

in the case where photons and electrons are interacting through Compton scattering.

• Boltzmann transport equation

In              , the “1” for spontaneous Compton scattering, and the         for stimulated Compton 
scattering.

The Boltzmann equation may be expanded to second order in the small energy transfer, yielding 
an approximation called the Fokker-Plank equation. For photons scattering off a nonrelativistic, 
thermal distribution of electrons, the Fokker-Plank equation was first derived by A. S. 
Kompaneets (1957) and is known as the Kompaneets equation.

• For the complete derivation, see the books “X-ray spectroscopy in Astrophysics (eds. van 
Paradijs)”, pages 213-218, and the book “High Energy Astrophysics (Katz)”, pages 103-110.

• Monte Carlo Simulation of Compton scattering: see “Pozdnyakov, Sobol, and Suyaev (1983, 
Soviet Scientific Reviews, vol. 2, 189-331)” (1983ASPRv...2..189P)

∂n(ω )
∂t

= c d 3p dΩ dσ
dΩ

fe(p′)n(ω ′)(1+ n(ω ))− fe(p)n(ω )(1+ n(ω ′))[ ]∫∫

n(ω )1+ n(ω )

∂n
∂tc

= kBT
mc2

⎛
⎝⎜

⎞
⎠⎟
1
x2

∂
∂x

x4 ∂n
∂x

+ n + n2⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥  

x ≡ !ω
kBT

, and tc ≡ (neσ T c)twhere
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8. Plasma Effects
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[Dispersion in Cold, Isotropic Plasma]
• Roughly speaking a plasma is a

globally neutral

partially or completely ionized gas

• Plasma Dispersion Relation
Assume a space and time variation of all quantities of the form                            .

Equation of motion when there is no external magnetic field

Current density:

∇⋅E = 4πρ
∇⋅B = 0

∇×E = − 1
c
∂B
∂t

∇×B = 4π
c
j+ 1

c
∂E
∂t

ik ⋅E = 4πρ
ik ⋅B = 0

ik ×E = iω
c
B

ik ×B = 4π
c
j− iω

c
E

exp i k ⋅r −ωt( )⎡⎣ ⎤⎦

 
m!v = −e E+ v

c
×B⎛

⎝⎜
⎞
⎠⎟ ≈ −eE −imωv = −eE

v = eE
iωm

j ≡ −nev =σE σ ≡ ine
2

ωm
conductivity:
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Continuity equation

Using

These equations are now “source-free.”

           form a mutually orthogonal right-hand vector triad.

the dispersion relation is

∂ρ
∂t

+∇⋅ j = 0 −iωρ + ik ⋅ j = 0 → ρ = 1
ω
k ⋅ j = σ

ω
k ⋅E

ik ⋅E = 4πρ
ik ⋅B = 0

ik ×E = iω
c
B

ik ×B = 4π
c
j− iω

c
E

j =σE

ρ = σ
ω
k ⋅E

 

ik ⋅εE = 0
ik ⋅B = 0

ik ×E = iω
c
B

ik ×B = −iω
c
εE

 

ε ≡ 1− 4πσ
iω

= 1− 4πne
2

mω 2

= 1−
ω p

ω
⎛
⎝⎜

⎞
⎠⎟

2

where
dielectric constant:

ω p
2 ≡ 4πne

2

m
ω p = 5.63×10

4 n / cm3( )1/2 s−1

plasma frequency:

k, E, B

 c2k2 = εω 2

or c2k2 =ω 2 −ω p
2

ω 2 =ω p
2 + c2k2
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• If              , then           . Wavenumber is imaginary!

The wave amplitude decreases as         on a scale of the order of                  .

Thus       defines a plasma cutoff frequency below which there is no electromagnetic propagation.

For instance, Earth ionosphere prevents extraterrestrial radiation at frequencies less than about 1 
MHz from being observed at the earth’s surface (                   ).

Method of probing the ionosphere:

Let a pulse of radiation in a narrow range about      be directed straight upward from the earth’s 
surface.

When there is a layer at which n is large enough to make            , the pulse will be totally 
reflected from the layer.

The time delay of the pulse provides information on the height of the layer.

By making such measurements at many different frequencies, the electron density can be 
determined as a function of height.

ω <ω p k2 < 0

k = i
c

ω p
2 −ω 2

e−|k|r

ω p

n ~104 cm-3

≈ 2πc /ω p

ω

ω p >ω
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• Group and Phase Velocity
When             , waves do propagate without damping.

Phase velocity

where the index of refraction

Group velocity

• Pulsar
Each small range of frequencies travels at a slightly different group velocity and will reach earth 
at a slightly different time.

Let d = pulsar distance.

the time required for a pulse to reach earth at frequency     is                  .

The plasma frequency in ISM is usually quite low (         Hz), so we can assume that              .

ω >ω p

 
vph ≡

ω
k
= c
nr

  
nr ≡ ε = 1−

ω p
2

ω 2 → vph > c

 
vg ≡

∂ω
∂k

= k
ω

= c 1−
ω p

2

ω 2 → vg < cω 2 =ω p
2 + c2k2

ω
 
t p =

ds
vg0

d

∫
~103  ω ≫ω p

 

1
vg

= 1
c
1−

ω p
2

ω 2

⎛

⎝⎜
⎞

⎠⎟

−1/2

≈ 1
c
1+ 1
2
ω p

2

ω 2

⎛

⎝⎜
⎞

⎠⎟
→ t p ≈

d
c
+ 2πe

2

cmω 2 nds
0

d

∫
transit time for a vacuum + plasma correction
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• Dispersion measure:

the rate of change of arrival time w.r.t.:

If one has idea of pulsar distance, one can use pulsar data to map free electron density.

Taylor & Cordes (1993, ApJ, 411, 674)

Cordes & Lazio (2003, arXiv:astro-ph/0207156)

Schnitzeler (2012, MNRAS, 427, 664)

 

dtp
dω

= − 4πe
2

cmω 3 DM where DM ≡ nds
0

d

∫
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regions or portions of ionized shells surrounding supershell
regions. Finally, we also include “voids” that generally are
regions of lower than ambient density which are mutually
exclusive of all components (except clumps) rather than
superposing with them. Voids override all components
other than clumps and are required to account for the
distances of some pulsars.

Associated with each component in the model is a
separate value of the fluctuation parameter, F . Details
about the functions used are given in Table 2 and
summarized in sections below. As in TC93, we use
sech2(|z|/H) for the z dependences of most components
to produce a “rounder” variation at z = 0 than an
exponential dependence ∝ exp(−|z|/H). Both the
exponential and sech2 functions integrate to the same
asymptotic value (H) and have nearly equal 1/e locations.

Table 3 gives parameter values for the large scale
parameters and compares them, where appropriate, with
those of the TC93 model. The best-fitting parameters were
found by an iterative likelihood analysis that is similar to
that used in TC93 but with a number of improvements in
the details of the fitting (Paper II).

Fig. 2.— Electron density corresponding to the best fit model
plotted as a grayscale with logarithmic levels on a 30×30 kpc
x-y plane at z=0 and centered on the Galactic center. The most
prominent large-scale features are the spiral arms, a thick, tenuous
disk, a molecular ring component. A Galactic center component
appears as a small dot. The small-scale, lighter features represent
the local ISM and underdense regions required for by some lines
of sight with independent distance measurements. The small dark
region embedded in one of the underdense, ellipsoidal regions is the
Gum Nebula and Vela supernova remnant.

Fig. 3.— Top: Electron density plotted against Galactocentric
radius in the direction from the Galactic center through the Sun
for the various large-scale components. Bottom: Electron density
plotted against |z|. For the inner Galaxy (thin disk) component,
the profile is for r = 3.5 kpc, the peak of the annular component.
For the thick disk component, the cut is at r = R⊙. The spiral arm
cut is at (x, y) = 0, 10.6 kpc.

3.1.1. Outer, Thick Disk Component

The outer, thick disk component is responsible for the
DMs of globular cluster pulsars and the low-frequency
diameters of high-latitude extragalactic sources (e.g., as
inferred from interplanetary scintillation measurements).
In TC93 this component was determined to have a scale
height of roughly 1 kpc with a Galactocentric radial scale
length of roughly 20 kpc. However, the data available for
TC93 did not allow a firm constraint on the Galactocentric
scale length; scale lengths as large as 50 kpc were also
allowed by the data. Through measurements of scattering
of extragalactic sources toward the Galactic anticenter,
Lazio & Cordes (1998a,b) inferred a scale length ∼ 20
kpc and a functional form that truncates at this scale.
Alternatives are discussed in Paper II.

3.1.2. Inner, Thin Disk Component

An inner Galaxy component (n2) consisted of a
Gaussian annulus in TC93. Data available to TC93 could
not distinguish a filled Gaussian form in Galactocentric
radius from an annular form, but the latter was chosen
for consistency with the molecular ring seen in CO (e.g.,
(Dame et al. 1987). We adopt the same form in our model;
in Paper II we discuss alternatives to the annular form.

3.1.3. Spiral Arms

Is spiral arm structure required by pulsar dispersion
measures and distance constraints? TC93 argue that it
is by referring to the asymmetry of the distribution of
DM vs. Galactic longitude (c.f. their Figure 2). The same
asymmetry appears in the larger sample now available
(Paper II). A direct demonstration can be made by
calculating the DM deficit for individual pulsars for various
electron-density models, defined as the difference between
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in Paper II we discuss alternatives to the annular form.
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DM vs. Galactic longitude (c.f. their Figure 2). The same
asymmetry appears in the larger sample now available
(Paper II). A direct demonstration can be made by
calculating the DM deficit for individual pulsars for various
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Cordes & Lazio (2003)
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[Propagation along a Magnetic Field; Faraday Rotation]
• Now we consider the effect of an external, fixed magnetic field      .

The properties of the waves will then depend on the direction of propagation relative to the 
magnetic field direction.

If the fixed magnetic field     is much stronger than the field strengths of the propagating wave, 
then the equation of motion of an electron is approximately

For simplicity, assume that the wave propagates along the fixed field               , and assume that 
the wave is circularly polarized and sinusoidal.

 

ω B =
eB0
mc

= 1.67 ×107 B0 /G( ) s-1

!ω B = 1.16 ×10
−8 B0 /G( ) eV

B0

B0

m dv
dt

= −eE− e
c
v ×B0

B0 = B0ẑ

 
E(t) = Ee− iωt x̂ ∓ iŷ( ) →

dv"
dt

= 0, v" = constant

  
−iω( )e− iωt vxx̂ +vyŷ( ) = − e

m
Ee− iωt x̂ ∓ iŷ( )− e

mc
e− iωt vyB0x̂ −vxB0ŷ( )

 v⊥ = vxx̂ +vyŷ

 ∓Here,     denotes right and left circular polarization.
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−iω( )e− iωt vxx̂ +vyŷ( ) = − e
m
Ee− iωt x̂ ∓ iŷ( )− e

mc
e− iωt vyB0x̂ −vxB0ŷ( )

vx = − ie
mω

E − ieB0
mcω

vy , vy = ∓
e
mω

E + ieB0
mcω

vx

  

vx = − ie
mω

E − ieB0
mcω

∓
e
mω

E + ieB0
mcω

vx
⎛
⎝⎜

⎞
⎠⎟ → 1− e2B0

2

m2c2ω 2
⎛
⎝⎜

⎞
⎠⎟
vx = − ie

mω
E 1∓ eB0

mcω
⎛
⎝⎜

⎞
⎠⎟

→ ω 2 −ω B
2( )vx = − ie

m
E ω ∓ω B( )

→ vx = − ie
m
E 1
ω ±ω B

  

vy = ∓
e
mω

E + ieB0
mcω

− ie
mω

E − ieB0
mcω

vy
⎛
⎝⎜

⎞
⎠⎟ → 1− e2B0

2

m2c2ω 2
⎛
⎝⎜

⎞
⎠⎟
vy = ∓

e
mω

E 1∓ eB0
mcω

⎛
⎝⎜

⎞
⎠⎟

→ ω 2 −ω B
2( )vy = ∓ em E ω ∓ω B( )

→ vy = ∓
e
m
E 1
ω ±ω B

∴v = −ie
m ω ±ω B( )E(t) → j ≡ −nev =σE, σ R,L ≡

ine2

m ω ±ω B( )

current density, conductivity
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Dielectric constant

Right (+) and left(-) circularly polarized waves travel with different speeds.

Speed difference sense is            .

• Faraday Rotation
If the incident radiation is circularly polarized (either R or L), then the radiation will encounter 
different dispersion than unmagnetized case. But, the radiation will still remain circularly 
polarized.

If the incident radiation is linearly polarized, i.e., a linear superposition of a right-hand and a left-
hand polarized wave, then the line of polarization will rotate as it propagates. This effect is 
called Faraday rotation.

 

ε ≡ 1− 4πσ
iω

= 1− 4πne2

mω ω ±ω B( )

εR,L = 1−
ω p

2

ω ω ±ω B( )

 vR > vL

Propagation Along a Magnetic Fiehi; Famday Rotation 231 

( a )  

Figwe 8.14 Decomposition of linear polarization into conpments of right and 
kfi circular plarization 

(b )  

Figure 8.16 Faraday rotation of the prcUre of polarizatioa 

Thus we have the result 

or, substituting for and oB, we obtain the formula for Faraday rotation: 

(8.31) 

As derived here, this formula holds only if the direction of B is always 
along the line of sight. However, it can be shown that this formula holds in 
general if we use B,,,  the component of B along the line of sight. 

Since A 0  varies with frequency (as up*) for the same line of sight, we 
can determine the value of the integral JnB, ,  ds by malung measurements at 
several frequencies. This can be used to deduce information about the 
interstellar magnetic field. However, if this field changes direction often 
along the line of sight (as we believe it does), then this method gives only a 
lower limit to actual field magnitudes. 
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• Phase after traveling a distance d:

Assume that 

Consider an electromagnetic wave that starts off linearly polarized in the x-direction at the source.

After propagating a distance d through a magnetized plasma toward the observer, the electric field 
will be

Radiation that starts linearly polarized in a certain direction is rotated by the Faraday effect 
through an angle     after propagating a distance d through a magnetized plasma.

φR, L = kR, L dz0

d

∫

  

kR, L =
ω
c
εR, L = ω

c
1−

ω p
2

ω 2 1±ω B /ω( )
⎡

⎣
⎢

⎤

⎦
⎥ ≈

ω
c
1−

ω p
2

2ω 2 1∓
ω B

ω
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

= ω
c
−

ω p
2

2cω
±
ω p

2ω B

2cω 2 = k0 ± Δk

 ω ≫ω p , ω ≫ω B

E(t) = Ee− iωt x̂ = 1
2
x̂ − iŷ( ) + x̂ + iŷ( )⎡⎣ ⎤⎦Ee

− iωt

E(t) = 1
2
x̂ − iŷ( )ei(φ+ϕ ) + x̂ + iŷ( )ei(φ−ϕ )⎡⎣ ⎤⎦Ee

− iωt

= x̂cosϕ + ŷsinϕ( )Eei(φ−ωt )
kR, L dz0

d

∫ = k0 dz0

d

∫ ± Δk dz
0

d

∫ ≡ φ ±ϕwhere

 
ϕ = Δk dz

0

d

∫ = 1
2

ω p
2ω B

cω 2 ds
0

d

∫ = 2πe3

m2c2ω 2 nB! ds0

d

∫

ϕ
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• We cannot, of course, generally measure the absolute rotation angle, since we do not know the 
intrinsic polarization direction of the radiation when it started from the source.

However, since       varies with frequency (as       ), we can determine the value of integral               
by making measurements at several frequencies. This can give information about the interstellar 
magnetic field.

Rotation measure is defined by

However, the field changes direction often along the line of sight and this method gives only a 
lower limit to actual field magnitudes.

(Taylor, Stil, & Sunstrum 2009, ApJ, 702, 1230)
Red circles are positive RM and blue circles are negative.
The size of the circle scales linearly with magnitude of RM.

ω −2

 nB! ds∫

  
ϕ = 2πe3

m2c2ω 2 RM = e3λ 2

2πm2c4
RM, where RM ≡ nB! ds0

d

∫

ϕ
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Figure 3. Plot of 37,543 RM values over the sky north of δ = −40◦. Red circles are positive rotation measure and blue circles are negative. The size of the circle scales linearly with magnitude of rotation measure.

For measurements toward sources (pulsars) where 
the dispersion measure (DM) is also known, we 
can derive an estimate of the mean field strength 
along the line of sight. 

  
B! = RM

DM

Radio astronomers have concluded that

 

ne ≈ 0.03 cm-3

B! ≈ 3 µG
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[Plasma Effects in High-Energy Emission Processes]
• Maxwell equations in dielectric medium:

These equations formally result from Maxwell’s equation in vacuum by the substitutions.

These equations may be solved in the same manner as before for the retarded and Lienard-
Wiechert potentials.

 

∇⋅ εE( ) = 4πρ
∇⋅B = 0

∇×E = − 1
c
∂B
∂t

∇×B = 4π
c
j+ 1

c
∂ εE( )
∂t

 

E→ εE
c→ c / ε
B→ B
e→ e / ε

φ → εφ
A→ A

B = ∇×A

E = −∇φ − 1
c
∂A
∂t
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- Cherenkov Radiation
• Radiation from relativistic charges moving in a plasma with                  .

In this case, the velocity of the charges can exceed the phase velocity:

The beaming term of the Lienard-Wiechert potentials can vanish for an angle      such 
that                       .

The potentials become infinite at certain places. In consequence, the uniformly moving particle 
can now radiate.

Cherenkov cone: Outside the cone, points feel no potentials yet. Inside the cone, each point is 
intersected by two spheres. The resulting radiation is called Cherenkov radiation.

A common analogy is the sonic boom of a supersonic aircraft or bullet.

 nr ≡ ε >1

 
v p =

c
nr

< v < c → βnr >1

 κ = 1− (v / c)cosθ →κ = 1− βnr cosθ

θ
cosθ = (nrβ )

−1

234 PIasmcr Eflects 

v > 4  
V < +  “ r  

Figure 8.2 Propagation of w m  fronts generated by a partic& m&g with 
uelmity v through a refractice medium 

Figure 8.3 Geometry of Che&m cone. 

The precise direction of the radiation can be used as an energy measure- 
ment for fast particles in the laboratory or observatory. Cherenkov radia- 
tion due to high energy cosmic rays has been observed in the earth’s 
atmosphere. Since the radiation is quite intense for fast particles, it acts as 
an effective mechanism for energy loss. 

Razin Effect 

When n,< 1, as it is in a cold plasma, Cherenkov radiation cannot occur. 
In this case there is an effect that has important implications for synchro- 
tron emission. The “beaming” effect associated with emission from a fast 

 v >v p 
v< v p =

c
nr
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- Razin-Tsytovich Effect
• When           , Cherenkov radiation cannot occur.

The critical angle defining the beaming effect in a vacuum was shown to be                             . 
But in a plasma we have instead

If                            ,

If                ,                   and the beaming effect is suppressed.

Below the frequency       ,  the synchrotron spectrum will be cut off because of the suppression of 
beaming. This is called the Razin-Tsytovich effect.

As frequencies increase,      decreases until it becomes of order of the vacuum value        , and 
therefore the vacuum results apply.

Therefore, the plasma medium effect is unimportant when                  .

       

nr <1

θb ~1/γ = 1− β 2

θb ~ 1− nr
2β 2

 nr ≪1, and β ~1

θb ~ 1− nr
2 = 1− 1−

ω p
2

ω (ω ±ω B )
⎛

⎝⎜
⎞

⎠⎟
≈
ω p

ω

θb 1/γ

 ω ≫ γ ω p

ω < γω p θb >1/γ

γω p
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