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[Scattering from Electrons at Rest]
• Thomson Scattering

When          , the scattering is called coherent or elastic.

• Compton scattering: However, a photon carries momentum       and energy     . Quantum effects 
appear in two ways.

(1) The scattering will no longer be elastic             because of the recoil of the charge.

(2) The cross sections are altered by the quantum effects.

• Conservation of momentum and energy

Let the initial and final four-momenta of the photon:

the initial and final momenta of the electron are:

Then, the conservation of momentum and energy is expressed by

 

ε = ε1
dσ T

dΩ
= 1
2
r0
2 1+ cos2θ( )

σ T = 8π
3
r0
2

 

ε = energy of the incident photon
ε1 = energy of the scattered photon

r0 =
e2

mec
2

 ε = ε1
hν
c hν

 (ε ≠ ε1)

  
!
Pγ i = (ε / c)(1, ni ),

!
Pγ f = (ε1 / c)(1, n f )

 
!
Pei = (mc, 0),

!
Pef = (E / c, p)

 
!
Pei +

!
Pγ i =

!
Pef +

!
Pγ f
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1% Compton Scattenkg 

Quantum effects appear in two ways: First, through the hnematics of 
the scattering process, and, second, through the alteration of the cross 
sections. The kinematic effects occur because a photon possesses a 
momentum h v / c  as well as an energy hv. The scattering will no longer be 
elastic (c,#r) because of the recoil of the charge. Let us set up the 
conservation .of energy and momentum relations. The initial and final 
four-momenta of the photon are P,; =(r/c)( l,ni) and_P,f=(e,/c)( 1, n,) and 
the initial and final momenta of the electron are Pej=(rnc,O) and Fe,= 
( E / c , p ) ,  where ni and n, are the initial and final directions of the photons 
(see Fig. 7.1). Conservation of momentum and energy is+expres:ed 9 
Pei f P . = Per+ PTP Rearranging terms and squaring gives I Pe,lz= I Pei + P,; 
- P, fy  which eliminates the final electron momentum. We thus finally 
obtain 

+ - - -  

In terms of wavelength, this can be written: 

A,  -A=A,(I -case) 

where the Compton wavelength is defined by 

h 
mc 

X , r  - 

= 0.02426 A for electrons. 

(7.3a) 

(7.3b) 

Figure %I  Geometry for scattering of a photon by an electron Ltitially at rest. 
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• Rearranging terms and squaring gives                                    .

  

!
Pef

2
c2 =

!
Pei +

!
Pγ i −

!
Pγ f

2
c2

E2 − p 2 c2 = mc2 + ε − ε1( )2 − εni − ε1n f

2

(mc2 )2 = (mc2 )2 + ε2 + ε1
2 − 2εε1 + 2mc

2 (ε − ε1)− ε
2 + ε1

2 − 2εε1 cosθ( )
0 = mc2ε − ε1 ε +mc

2 − εcosθ( )

 

∴ε1 =
ε

1+ ε
mc2

1− cosθ( )
λ1 − λ = h

mc
1− cosθ( )

λc ≡
h
mc

= 0.02426Å

 
!
Pef

2
=
!
Pei +

!
Pγ i −

!
Pγ f

2

In terms of wavelength,

Compton wavelength: for electrons

There is a wavelength change of the order of       upon scattering.
For long wavelengths                                      the scattering is closely elastic.

λc

 λ ≫ λc (i.e., hν ≪ mc2 )
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• Klein-Nishina formula (the differential cross section for unpolarized radiation, QED)

• total cross section:

• Approximations:

 

σ ≈σ T 1− 2x + 26x
2

5
+!

⎛
⎝⎜

⎞
⎠⎟
, x≪1

σ ≈ 3
8
σ T
1
x
ln2x + 1

2
⎛
⎝⎜

⎞
⎠⎟ , x≫1

 

dσ
dΩ

= 3σ T

16π
ε1
2

ε2
ε

ε1
+ ε1
ε
− sin2θ

⎛
⎝⎜

⎞
⎠⎟

σ = 2π dσ
dΩ−1

1

∫ d cosθ( )

= 3σ T

4
1+ x
x3

2x(1+ x)
1+ 2x

− ln 1+ 2x( )⎧
⎨
⎩

⎫
⎬
⎭
+ 1
2x
ln 1+ 2x( )− 1+ 3x

1+ 2x( )2
⎡

⎣
⎢

⎤

⎦
⎥ x ≡ hν

mc2
where

nonrelativisitic regime:

extreme relativisitic regime:

10-3 10-2 10-1 100 101 102 103
hi/mc2

10-3

10-2

10-1

100

m
/m
T

(note mec
2 = 511 keV)
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[Scattering from Electrons in Motion]
• Inverse Compton Scattering: Whenever the moving electron has sufficient kinetic energy 

compared to the photon, net energy may be transferred from the electron to the photon.

From Doppler shift formulas

In the case of relativistic electrons,

providing that the condition for Thomson scattering in the rest frame is met                         .

Therefore, the inverse Compton scattering converts a low-energy photon to a high-energy photon 
by a factor of order    .

1% Cowton Scattering 

f 

K K ’  

F i p e  7.2 Scattering geometries tr the obseroer’s frame K and in the electron 
mst fmme K’.  

Note that our previous formulas for scattering from electrons at rest 
should now be written in primed notation, since they hold in the electron 
rest frame. From the Doppler shift formulas, [cf. (4.12)], 

Now, we also know, from Eq. (7.2) that 

1 €’ 
€ ; = € I  1 - - ( I  -cos0)  [ mc2 

(7.7a) 

(7.7b) 

(7.8a) 

cos0 = cosB; cos6’+ sinB’sinB;cos(+’ - (p’,), (7.8b) 

where +; and (p’ are the azimuthal angles of the scattered photon and 
incident photon in the rest frame. 

In the case of relativistic electrons, y2  - 1 >>hv/rnc2, the energies of the 
photon before scattering, in the rest frame of the electron, and after 
scattering are in the approximate ratios 

1 : y : y*, 

providing that the condition for Thomson scattering in the rest frame 
yr<<mc2 is met. This follows from Eqs. (7.7), since B and 6,’ are characteris- 
tically of order 7r/2. 

This process therefore converts a low-energy photon to a high-energy 
one by a factor of order y2. Since the intermediate photon energy can be as 
high as, say, 100 keV and still be in the Thomson limit, it can be seen that 
photons of enormous energies ( y x  100 keV) can be produced. If the 

 

ε′ = εγ (1− β cosθ )
ε1 = ε1 ′γ (1+ β cosθ1 ′)

 
ε1 ′ ≈ ε′ 1−

ε′
mc2

1− cosΘ′( )⎡
⎣⎢

⎤
⎦⎥

cosΘ′ = cosθ1 ′cosθ ′ + sinθ ′sinθ1 ′cos(φ′ −φ1 ′)

 γ
2 −1≫ hν /mc2

 ε :ε′ :ε1 ′ ≈1:γ :γ
2

  (ε′ ≈ εγ ≪ mc2 )

  (if ε′≪ mc2 )

γ 2
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[Inverse Compton Power for Single Scattering]
• Assumptions:

(1) isotropic distributions of photons and electrons.

(2) The change in energy of the photon in the rest frame is negligible (Thomson scattering is 
applicable in the electron’s rest frame).

• Total power scattered in the electron’s rest frame:

• Recall

 

dE1 ′
dt ′

= cσ T ε1 ′nε ′dε′∫

 ε1 ′ ≈ ε′

where            is the number density of incident photons. nε ′dε′

dE1
dt

= dE1 ′
dt ′

 nεdε = npd
3p

since energy and time transforms in the same way.

where              is the number density of incident photons.npd
3p

d 3p transforms in the same way as energy.

 
∴ nεdε
ε

= nε ′dε′
ε′
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• Thus we have the results

For an isotropic distribution of photons,

we obtain

Rate of decrease of the total initial photon energy is

Thus the net power lost bye the electron, and converted into increased radiation, is

 

dE1
dt

= cσ T ε′
2 nε ′dε′
ε′∫ = cσ T ε′

2 nεdε
ε∫

= cσ Tγ
2 1− β cosθ( )2 εnε dε∫

 ε′ = εγ (1− β cosθ )

1− β cosθ( )2 = 1+ 1
3
β 2 ← cosθ = 0, cos2θ = 1/ 3

dE1
dt

= cσ Tγ
2 1+ 1

3
β 2⎛

⎝⎜
⎞
⎠⎟Uph

 
Uph ≡ εnε dε∫ is the initial photon energy density.

dE1
dt

= −cσ TUph

Pcompt ≡
dErad
dt

= cσ TUph γ 2 1+ 1
3
β 2⎛

⎝⎜
⎞
⎠⎟ −1

⎡
⎣⎢

⎤
⎦⎥
= 4
3
σ T cγ

2β 2Uph γ 2 −1= γ 2β 2
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• Recall that the formula for the synchrotron power emitted by each electron is

Therefore, 

The radiation losses due to synchrotron emission and to inverse Compton effect are in the same 
ratio as the magnetic field energy density and photon energy density.

• Let                  be the number of electrons per unit volume. Then, the total Compton power per 
unit volume is

(1) Power-law distribution of relativistic electrons 

(2) Thermal distribution of nonrelativistic electrons

Psynch =
4
3
σ T cγ

2β 2UB

Psynch
Pcompt

= UB

Uph

N (γ )dγ

N (γ ) =
Cγ − p , γ min ≤ γ ≤ γ max

0, otherwize

⎧
⎨
⎪

⎩⎪
Ptot =

4
3
σ T cUphC(3− p)

−1 γ min
3− p −γ max

3− p( )

(β ~1)

Ptot = PcomptN (γ )dγ∫

(γ ~1)

 β
2 = v2 / c2 = 3kT /mc2 Ptot =

4kT
mc2

⎛
⎝⎜

⎞
⎠⎟σ T cneUph

fractional photon energy gain
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[Inverse Compton Spectra for Single Scattering]
• Approach: (1) Determine the spectrum for the scattering of photons of a single energy off 

electrons of a single energy, and then (2) Average over the actual distribution of photons and 
electrons.

• Assumptions: 

(1) Both the photons and electrons have isotropic distributions; the scattered photons are then also 
isotropically distributed.

(2) Thomson scattering in the rest frame:

(3) Isotropic scattering in the rest frame:

Even with these assumptions, we obtain the correct qualitative behavior of the results.

• We will use an intensity and emission coefficient based on photon number rather than energy.

• Isotropic and monoenergetic photon field:

  γ ε0 ≪ mc2 , ε0 ′ ≈ ε1 ′

dσ ′
dΩ′

= 1
4π

σ T

 I (ε) = F0δ (ε − ε0 )

 I (ε)dAdtdΩdε
= number of photons crossing are dA in time dt within solid angle       and energy rangedΩ  dε

in the observer frame,

in the electron rest frame,
 
I ′(ε) = F0

ε′
ε

⎛
⎝⎜

⎞
⎠⎟
2

δ (ε − ε0 )
I
ν 2 = Lorentz invariant
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From the Doppler formula                          , the incident intensity is

Emission coefficient in the rest frame:

Emission coefficient in the observer’s frame:

 

I ′(ε) = ε′
ε0

⎛
⎝⎜

⎞
⎠⎟

2

F0δ γ ε′(1+ βµ′)− ε0( )

= ε′
ε0

⎛
⎝⎜

⎞
⎠⎟

2
F0
γβε′

δ µ′ − ε0 −γ ε′
γβε′

⎛
⎝⎜

⎞
⎠⎟

 ε = ε′γ (1+ βµ′)

 

j′(ε1 ′) = N ′σ T
1
4π

I ′(ε1 ′,µ′)dµ′∫

= N ′σ Tε1 ′F0
2ε0

2γβ
, if ε0 −γ ε1 ′

γβε1 ′
≤1 or equivalently ε0

γ (1+ β )
≤ ε1 ′ ≤

ε0
γ (1− β )

= 0, otherwise.

Recall that
 

j
ε
= Lorentz invariant

Nd 3x = N ′d 3x′, d 3x = d
3x′
γ
, N = γ N ′

 ε1 ′ = ε1γ (1− βµ1)

Let N = density of a electron beam

10



For an isotropic distribution of electrons

The integrand is nonzero only for a certain interval of     :

Since                   , the nonzero interval becomes:

 

j(ε1,µ1) =
ε1
ε1 ′

j′(ε1 ′)

=
N ′σ Tε1F0
2ε0

2γβ
, if ε0

γ (1+ β )
≤ ε1 ′ ≤

ε0
γ (1− β )

0, otherwise.

⎧

⎨
⎪

⎩
⎪

=
Nσ Tε1F0
2ε0

2γ 2β
, if ε0

γ 2 (1+ β )(1− βµ1)
≤ ε1 ≤

ε0
γ 2 (1− β )(1− βµ1)

0, otherwise.

⎧

⎨
⎪

⎩
⎪

 
j(ε1) =

1
2

j(ε1,µ1)dµ1−1

+1

∫

µ1

 

ε0
γ 2 (1+ β )(1− βµ1)

≤ ε1 ≤
ε0

γ 2 (1− β )(1− βµ1)
→ 1

β
1− ε0
ε1
(1+ β )

⎡

⎣
⎢

⎤

⎦
⎥ ≤ µ1 ≤

1
β
1− ε0
ε1
(1− β )

⎡

⎣
⎢

⎤

⎦
⎥

−1≤ µ1 ≤1

 

−1≤ µ1 ≤
1
β
1− ε0
ε1
(1− β )

⎡

⎣
⎢

⎤

⎦
⎥, for 1− β

1+ β
≤ ε1
ε0

≤1

1
β
1− ε0
ε1
(1+ β )

⎡

⎣
⎢

⎤

⎦
⎥ ≤ µ1 ≤1, for 1≤ ε1

ε0
≤1+ β
1− β
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The result is:

Note that

(1) For small      the curves are symmetrical
about the initial photon energy.

(2) As     increases, the portion of the curve for

becomes more and more dominant.

 

j(ε1) =
Nσ T F0
4ε0γ

2β 2

(1+ β ) ε1
ε0
− (1− β ), 1− β

1+ β
≤ ε1
ε0

≤1

(1+ β )− ε1
ε0
(1− β ), 1≤ ε1

ε0
≤ 1+ β
1− β

0, otherwise

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

 

j(ε1)0

∞

∫ dε1 = Nσ T F0

j(ε1)(ε1 − ε0 )dε1 = Nσ T
4
3
γ 2β 2ε0F00

∞

∫

: the conservation of number of photons upon scattering

: the average increase in photon energy per scattering

5 

4 

3 

2 

I 

0 
0 1 2 3 4 5 

0 0.5 1 .o 

X 

Figurn 7.3 Functions describing the inverse Compton spectrum from a single 
scattering. (a) Enussion function for various values of f l  within isotropic ap- 
proximation (b) Comparisons of exact (&shed) utui isotropic (so&') 4pproxima- 
tiom forflx). 
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β =

     

β

β
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For extreme relativistic case  (β ≈1,γ ≫1)

 

j(ε1) =
Nσ T F0
4ε0γ

2β 2 (1+ β )−
ε1
ε0
(1− β )

⎡

⎣
⎢

⎤

⎦
⎥, 1≤

ε1
ε0

≤ 1+ β
1− β

= Nσ T F0
4ε0γ

2
1+ β
β 2 1− ε1

ε0

1− β
1+ β

⎛
⎝⎜

⎞
⎠⎟

≈ Nσ T F0
4ε0γ

2 2 1−
ε1
ε0

1
4γ 2

⎛
⎝⎜

⎞
⎠⎟

 
j(ε1) ≈

3Nσ T F0
4ε0γ

2 fiso (x)

 

where x ≡ ε1
4γ 2ε0

, fiso ≡
2
3
(1− x), 0 ≤ x ≤1

0, otherwise

⎧

⎨
⎪

⎩
⎪

  
1≤ ε1
ε0

≤ 1+ β
1− β

→ 1≤ ε1
ε0
! 4γ 2 → 0! x!1Note:

When the exact angular dependence
in the differential cross section is included,

f (x) = 2x ln x + x +1− 2x2 , 0 < x <1

5 

4 

3 

2 

I 

0 
0 1 2 3 4 5 

0 0.5 1 .o 

X 

Figurn 7.3 Functions describing the inverse Compton spectrum from a single 
scattering. (a) Enussion function for various values of f l  within isotropic ap- 
proximation (b) Comparisons of exact (&shed) utui isotropic (so&') 4pproxima- 
tiom forflx). 

206 

x

   

fiso (x)

f (x)
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• Power law distribution of relativistic electrons:

Total scattered power per volume per energy is

Suppose that               and that       peaks at some value     .

Then                                    and the second integral is independent of     .

The spectral index is to be identical to the case of synchrotron emission.

 

N (γ ) = Cγ − p

nε =
4π I (ε)
c

: electron distribution

: photon number density

 

dE
dVdtdε1

= 4πε1 j(ε1)

= 3cσ T

4
dε ε1
ε

⎛
⎝⎜

⎞
⎠⎟ nε dγ Cγ − p−2( )

γ 1

γ 2∫∫ f (x)

= 3σ T cC2
p−2ε1

−( p−1)/2 dεε( p−1)/2nε dxx( p−1)/2 f (x)
x1

x2∫∫

 γ 2 ≫ γ 1  nε  ε

 

x1 ≡ ε1 / (4γ 1
2ε)→ 0

x2 ≡ ε2 / (4γ 2
2ε)→∞

 ε1

 

dE
dVdtdε1

∝ε1
−( p−1)/2
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[Repeated Scattering: The Compton y Parameter]
• We restrict our considerations to situations in which the Thomson limit applies:

• Compton y parameter, to determine whether a photon will significantly change its energy in 
traversing the medium:

When        , the total photon energy and spectrum will be significantly altered; whereas for         , 
the total energy is not much changed.

• Average fractional energy change per scattering (for a thermal distribution of electrons)

Consider first the nonrelativistic limit.

In the lab frame to lowest order, this must be of the form

  γ ε≪ mc2

y ≡
average fractional
energy change per
scattering

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
×
mean number of
scatterings

⎛
⎝⎜

⎞
⎠⎟

 y!1  y≪1

 
ε1 ′ ≈ ε′ 1−

ε′
mc2

1− cosΘ( )⎡
⎣⎢

⎤
⎦⎥
→ Δε′
ε′

≡ ε1 ′ − ε′
ε′

= − ε′
mc2 : angle average

 

Δε
ε

= − ε
mc2

+ αkT
mc2
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To calculate    , image that the photons and electrons are in complete equilibrium but interact only 
through scattering.

Assume that the photon density is sufficiently small that stimulated processes can be neglected. 
Then, we obtain the Wien’s law for the photon distribution:

We have the averages

For this case, no net energy can be transferred from photons to electrons, so

Thus for nonrelativisitic electrons in thermal equilibrium, the energy transfer per scattering is

Note that if electrons have high enough temperature relative to incident photons, the photons gain 
energy. This is the inverse Compton scattering.

If               , on the other hand, energy is transferred from photons to electrons.

 
nε = Kε

2 exp − ε
kT

⎛
⎝⎜

⎞
⎠⎟

 

ε ≡ εnε dε∫ / nε dε∫ = 3kT

ε2 ≡ ε2nε dε∫ / nε dε∫ = 12 kT( )2

α

 
Δε = 0 = −

ε2

mc2
+ αkT
mc2

ε = 3kT
mc2

(α − 4)kT → α = 4

 
(Δε)NR =

ε

mc2
(4kT − ε)

 ε > 4kT
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• In the ultrarelativistic limit             , ignoring the energy transfer in the electron rest frame,

For a thermal distribution of ultrarelativistic electrons,

• Mean number of scatterings,

Recall that, for a pure scattering medium,

• Compton y parameter:

 (γ ≫1)

 

Pcompt
dE1 / dt

=
(4 / 3)σ T cγ

2β 2Uph

σ T cUph

= 4
3
γ 2β 2 → (Δε)R ≈ 4

3
γ 2ε

 
γ 2 =

ε2

(mc2 )2
= 12 kT

mc2
⎛
⎝⎜

⎞
⎠⎟
2

→ (Δε)R ≈16ε kT
mc2

⎛
⎝⎜

⎞
⎠⎟
2

mean number of
scatterings

⎛
⎝⎜

⎞
⎠⎟
≈Max τ es , τ es

2( ) where τ es ~ ρκ esR

κ es =
σ T

mp

= 0.40 cm2 g−1 for ionized hydrogen

R = size of the finite medium

yNR =
4kT
mc2

Max(τ es , τ es
2 )

 
yR = 16ε

kT
mc2

⎛
⎝⎜

⎞
⎠⎟
2

Max(τ es , τ es
2 )
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[Repeated Scattering: Spectra and Power]
• A power-law spectrum may be a natural consequence of a power-law distribution of electrons.

• We will show that a power-law photon distribution can also be produced from repeated scattering 
off a nonpower-law electron distribution.

Let A = the mean amplification of photon energy per scattering

mean photon energy = 

intensity =

After k scattering, the photon energy will be               .

For a optically thin scattering medium            , the probability of a photon undergoing k scattering 
before escaping the medium is                       .

The emergent intensity at energy      is given by   

 

A ≡ ε1
ε

~ 4
3

γ 2 = 16 kT
mc2

⎛
⎝⎜

⎞
⎠⎟
2

for thermal electron distribution

 εi

 I (εi ) at εi

 εk ~ εiA
k

pk (τ es ) ~ τ es
k

 εk

 

I (εk ) ~ I (εi )τ es
k ~ I (εi )τ es

ln(εk /εi )/lnA = I (εi )
εk
εi

⎛
⎝⎜

⎞
⎠⎟

lnτ /lnA

∴ I (εk ) ~ I (εi )
εk
εi

⎛
⎝⎜

⎞
⎠⎟

−α

where α ≡ − lnτ es
lnA

(τ es <1)

power-law shape
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• Total Compton power in the output spectrum is given by

The factor in square brackets is approximately the factor by which the initial power            is 
amplified in energy.

Clearly, this amplification will be important if           . Therefore, energy amplification of a soft 
photon input spectrum is important when

 
P ∝ I (εk )dεk = I (εi )εi x−α dx∫⎡⎣ ⎤

⎦∫

 I (εi )εi

 α ≪1

 
− lnτ es
lnA

≤1 → ln(τ esA) ≥1 → y = Aτ es !1
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[Synchrotron self-Compton (SSC) emission]
• The modification of the photon spectrum by Compton scattering is called Comptonization.

• Relativistic electrons in the presence of a magnetic field will surely emit synchrotron radiation at 
some level. The photons will undergo inverse compton scattering by the very same electrons that 
emitted them in the first place. Such scattering must take place before the synchrotron photon 
leaves the source region. This is the synchrotron self-Compton (SSC) process.

• Crab nebula
that exceeds the extrapolation of the continuum emission from
the radio band. This component is best described by a single
temperature of 46 K (Strom & Greidanus 1992). Unfortunately,
the spatial structure of the dust emission remains unresolved,
which introduces uncertainties for the model calculations. We
have assumed the dust to be distributed like the filaments, with a
scale length of 1A3. Sophisticated analyses of data taken with
the Infrared Space Observatory (ISO) satellite indicates that the
dust emission can be resolved (Green et al. 2004). The resulting
size seems to be consistent with the value assumed here.

3. Cosmicmicrowave background (CMB).—Given the low en-
ergy of the CMB photons, scattering continues to take place in
the Thomson regime even for electron energies exceeding
100 TeV (Aharonian & Atoyan 1995).

The influence of stellar light has been found to be negligible
(Atoyan & Aharonian 1996). The optical line emission of
the filaments is spatially too far separated from the inner region
of the nebula, where the very energetic electrons are injected
and cooled. However, in the case of acceleration taking place
at different places in the nebula, the line emission could be
important.

Given the recent detection of a compact component emitting
millimeter radiation (Bandiera et al. 2002), this radiation field
is included as seed photons for the calculation of the inverse
Compton scattering. A simple model calculation has been
performed that follows the phenomenological approach sug-
gested by Hillas et al. (1998).

In brief , the observed continuum emission from the nebula
up to MeVenergies is assumed to be synchrotron emission. By
setting the magnetic field to a constant average value within the
nebula, a prompt electron spectrum can be constructed that
reproduces the observed SED. Based on the measured size of
the nebula at different wavelengths, the density of electrons
and the produced synchrotron photons can be easily calculated
in the approximation that the radial density profile follows a
Gaussian distribution.

With this simple model, it is straightforward to introduce
additional electron components and seed photon fields to cal-
culate the inverse Compton–scattered emission of the nebula.
The model is described in more detail by Horns & Aharonian
(2004).

In order to extract the underlying electron spectrum, a
broadband SED is required (see Fig. 9). For the purpose of
compiling and selecting available measurements in the litera-
ture, mostly recent measurements have been chosen. The prime
goal of the compilation is to cover all possible wavelengths
from radio to gamma ray. The radio data are taken from Baars
& Hartsuijker (1972) and references therein, millimeter data
from Mezger et al. (1986) and Bandiera et al. (2002) and ref-
erences therein, the infrared data obtained with IRAS in the far-
to mid-infrared band from Strom & Greidanus (1992) and
those with ISO in the adjacent mid- to near-infrared band from
Douvion et al. (2001).

Optical and near-UV data from the Crab Nebula require
some extra considerations. The reddening along the line of
sight toward the Crab Nebula is a matter of some debate. For
the sake of homogeneity, data in the optical (Véron-Cetty &
Woltjer 1993) and near-UVand UV (Hennessy et al. 1992; Wu
1981) have been corrected applying an average extinction
curve for R ¼ 3:1 and E B" Vð Þ ¼ 0:51 (Cardelli et al. 1989).

The high-energy measurements of the Crab Nebula have
been summarized recently in Kuiper et al. (2001), to the extent
of including ROSAT HRI, BeppoSAX LECS, MECS, and PDS,

COMPTEL, and EGRET measurements covering the range
from soft X-rays up to gamma-ray emission. For the interme-
diate range of hard X-rays and soft gamma-rays, data from the
Earth occultation technique with the BATSE instrument have
been included (Ling & Wheaton 2003).

The observations of the Crab Nebula at VHE (E > 100 GeV)
have been carried out with a number of ground-based detec-
tors. Most successfully, Cerenkov detectors have established
the Crab Nebula as a standard candle in the VHE domain. A
summary of the measurements is presented in Aharonian et al.
(2000b). Recently, the MILAGRO group has published a flux
estimate that is consistent with the measurement presented here
(Atkins et al. 2003).

The results from different detectors reveal underlying sys-
tematic uncertainties in the absolute calibration of the instru-
ments. To extend the energy range covered in this work (0.5–
80 TeV), in Figure 9 results from nonimaging Cerenkov
detectors, such as CELESTE (open circle), STACEE ( filled
square), and GRAAL (open diamond ) at lower energy thresh-
olds have been included (de Naurois et al. 2002; Oser et al.
2001; Arqueros et al. 2002), converted into a differential flux
assuming a power law for the differential energy spectrum
with a photon index of 2.4. For energies beyond 100 TeV,
an upper limit on the integral flux from the CASA-MIA air
shower array has been added (Borione et al. 1997) assuming a
power law with a photon index of 3.2, as predicted from the
model calculations.

The resulting broadband SED is shown in Figure 9, including
as solid lines the synchrotron and inverse Compton emission,
as calculated with the electron energy distribution assumed
in this model. Also indicated as a dotted line in Figure 9 is the
thermal excess radiation, which is assumed to follow amodified
blackbody radiation distribution with a temperature of 46 K.
Finally, the emission at millimeter wavelengths is indicated by a
thin dashed line (see also x 5.2). The thick dashed line indicates
the synchrotron emission excluding the thermal infrared and
nonthermal millimeter radiation. The inverse Compton emis-
sion shown in Figure 9 includes the contribution from milli-
meter-emitting electrons (see x 5.2).

Besides the SED, an estimate of the volume of the emitting
region is required to calculate the photon number density in
the nebula to include as seed photons for inverse Compton

Fig. 9.—Calculations described in x 5 (curves). For a wide range of ener-
gies, recent measurements have been compiled from the literature (see the text
for further details and references).
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• Blazars: If the observer view is more or less normal to the accretion disk, the action close to the 
core becomes visible. The observer considered to lie within the jet beam. Such objects are known 
as blazars or as BL Lacertae objects.

• Blazars have SEDs that are typically two peaked. The peak at lower frequency is attributed to 
synchrotron radiation and the one at higher frequency to IC scattering.

The lower-energy case (LBL blazar) extends from the radio to the gamma-ray bands but is quiet 
in the TeV band. The higher-energy case (HBL blazar) reaches TeV energies but is quiet in the 
radio range.
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Fig. 9.5: Theoretical spectral energy distributions (SED) for blazars across the broad range of
frequencies where observations of blazars are carried out (shaded areas). The two curves exhibit
extremes of possible spectra (high and low energy) and illustrate the importance of observations
across many wave bands. In the model, the lower frequency peak arises from synchrotron photons,
and the higher frequency peak from IC-scattered photons in an SSC source that is hurtling at
relativistic speed toward the observer. In an SED plot, a flat spectrum represents constant energy
flux per fixed log interval (e.g., a decade of frequency). [P. Giommi et al., A&A 445, 843 (2006);
courtesy S. Colafrancesco]

9.5 Sunyaev–Zeldovich effect

Inverse Compton scattering plays a fundamental role in the interaction of two important
characteristics of our universe. One is the cosmic background radiation (CMB) that permeates
the entire universe. It consists of a sea of very low energy photons with a blackbody spectrum
of temperature Tr = 2.73 K and average energy hnav = 2.70 kTr = 6.4 × 10−4 eV (6.32). The
other characteristic is the existence of hot ionized gas (plasma) in the potential wells of
clusters of galaxies.

The Sunyaev–Zeldovich effect is the distortion of the blackbody spectrum of the CMB
owing to the IC interaction of the CMB photons with the energetic electrons of the cluster
plasma. This effect, together with x-ray measurements, yields the distances to the clusters
and thus allows determination of the Hubble constant. Sky surveys of such clusters should
yield the evolution of cluster numbers as the universe evolved.

Cluster scattering of CMB

Hot plasmas are known to exist in clusters of galaxies as evidenced by the thermal
bremsstrahlung x-ray emission radiated by them. In a typical cluster, the particles might
have kinetic energies of kTe ≈ 5 keV (Te ≈ 108 K). (Be careful to distinguish the CMB

LBL: Low-frequency peaked BL Lacs
HBL: High-frequency peaked BL Lacs
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Fig. 9.6: Spectral energy distribution (SED) of blazar 3C454.3 over many wave bands from
many observatories. The two-peaked character of Fig. 9.5 is clearly evident in the data and in
the simple one-zone model fits shown as solid and dashed lines. The filled circles signify recent
quasi-simultaneous subsets of radio, optical, x-ray, and gamma-ray data, the latter three being
mostly from the Swift gamma-ray burst observatory. The smaller points represent nonsimultaneous
observations in the literature. The data show large intensity variations across most frequency bands.
[P. Giommi et al., A&A, 456, 911 (2006)]

radiation temperature Tr and the cluster electron temperature Te.) An astronomer viewing the
CMB sky at some frequency n in the direction of such a cluster would measure a specific
intensity somewhat lower or higher than that of the CMB. This is due to IC scattering of the
CMB photons by the energetic electrons of the cluster plasma.

Note that the ∼5 keV electrons are much more energetic than the ∼10−3 eV photons.
Nevertheless, they are not relativistic, because kTe/mc2 ≈ 0.01; recall mc2 = 511 keV. This
corresponds to b = v/c = 0.14. The frequency-shift formulas provided above such as (18)
are not applicable.

Average frequency increase

CMB photons approaching the observer and passing through a cluster may not scatter at all.
However, if they do, they will be scattered out of the line of sight, whereas photons initially
traveling in other directions may be scattered into the line of sight (Fig. 9.7a). From the
isotropy of the CMB radiation, one can argue that the total number of photons arriving at
the observer will be unchanged, but some of these will have undergone scattering. If the
probability of any given photon being scattered in the cloud is small, as is the case for actual
clusters, the proportion of scattered photons in the observed radiation will be small.

3C454.3
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