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[Scattering from Electrons at Rest]

e Thomson Scattering

€=6 e = energy of the incident photon
do; _ 1 2 (1 + cos? 9) €, = energy of the scattered photon
dQ 2 o2
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When e=¢ , the scattering is called coherent or elastic.

. : hv
e Compton scattering: However, a photon carries momentum — and energy . Quantum effects

appear in two ways. ¢
(1) The scattering will no longer be elastic (e #¢,) because of the recoil of the charge.
(2) The cross sections are altered by the quantum effects.
e Conservation of momentum and energy
Let the initial and final four-momenta of the photon: P, =(e/c)(l,n,), P, =(¢ /c)(l,n,)
the initial and final momenta of the electron are: P,=(mc,0), B, =(E/c,p)

Then, the conservation of momentum and energy is expressed by
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* Rearranging terms and squaring gives |P | =|P, +P,-P,,
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Compton wavelength: A =-—=0.02426A for electrons
. mc y

There 1s a wavelength change of the order of A upon scattering.
For long wavelengths A > A4_(ie., hv < mc®) the scattering is closely elastic.




e Klein-Nishina formula (the differential cross section for unpolarized radiation, QED)

do 3o, 61 €8 _gnto 10°§
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[Scattering from Electrons in Motion]

e Inverse Compton Scattering: Whenever the moving electron has sufficient kinetic energy
compared to the photon, net energy may be transferred from the electron to the photon.

From Doppler shift formulas

¢ =ey(1—BcosO)
e, =¢ y(1+ BcosB,”)

e’ ze'[l— ‘ - (1—0038’)}

mc

(if € < mc?)
cos®’ =cosB,”cosf’+sinB’sinB," cos(¢”— ¢,”)
In the case of relativistic electrons, ¥ —1> hv/mc’
€€ ¢ =1:y:y°
providing that the condition for Thomson scattering in the rest frame is met (¢’ = ey < mc”).

Therefore, the inverse Compton scattering converts a low-energy photon to a high-energy photon
by a factor of order y°




[Inverse Compton Power for Single Scattering]

e Assumptions:
(1) 1sotropic distributions of photons and electrons.

(2) The change in energy of the photon in the rest frame 1s negligible (Thomson scattering 1s
applicable in the electron’s rest frame). ¢’ =¢’

e Total power scattered in the electron’s rest frame:

dE ’ ’ ’ /’ ’ 7 < < <

dtl’ = CGTJGI n'de where n_ 'de” is the number density of incident photons.
* Recall

dE, dE/’ . . .

g since energy and time transforms in the same way.

nde=n,d’p  where n,d’p isthe number density of incident photons.

d’p transforms in the same way as energy.
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e Thus we have the results
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For an 1sotropic distribution of photons,
<(1—ﬁc089)2> = 1+%ﬁ2 < (cos8)=0,(cos’0)=1/3

we obtain dE,
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U, = J.ene de 1is the initial photon energy density.

o . dE
Rate of decrease of the total initial photon energy is —=-co,U,,
dt P

Thus the net power lost bye the electron, and converted into increased radiation, 1s

dE 1 4
Pcompt = d;ad — CGTUph |:y2(1+§ﬁ2)_1:|:EGTCy2ﬁ2Uph < yz _1: yzﬁz




e Recall that the formula for the synchrotron power emitted by each electron is

4
= EGTCyzﬁzUB

synch ~—

Therefore, Foynen _ Uy
U,

compt

The radiation losses due to synchrotron emission and to inverse Compton effect are in the same
ratio as the magnetic field energy density and photon energy density.

e Let N(y)dy be the number of electrons per unit volume. Then, the total Compton power per
unit volume i1s

Py = | PopN(7)dy
(1) Power-law distribution of relativistic electrons (f ~1)

C _p’ min SY S max 4
Noy={ 1 =T 2 e R U, CB-py (v -2
0, otherwize 3

(2) Thermal distribution of nonrelativistic electrons (y ~1)

<ﬁ2>=<'uz/c2>=3kT/mc2 —— P =
mc

4kT
( > jGTcneUph

L fractional photon energy gain




[Inverse Compton Spectra for Single Scattering]

e Approach: (1) Determine the spectrum for the scattering of photons of a single energy off
electrons of a single energy, and then (2) Average over the actual distribution of photons and
electrons.

e Assumptions:

(1) Both the photons and electrons have isotropic distributions; the scattered photons are then also
isotropically distributed.

(2) Thomson scattering in the rest frame: Ye, <mc’, €’ =€’

(3) Isotropic scattering 1n the rest frame: gJg’ 1
’ = GT
dQ" 4rx

Even with these assumptions, we obtain the correct qualitative behavior of the results.

 We will use an intensity and emission coefficient based on photon number rather than energy.

I(e)dAdtdCde
= number of photons crossing are dA in time dt within solid angle dQ2 and energy range de

» [Isotropic and monoenergetic photon field:

in the observer frame, I(e)=F,0(e—¢,)

’
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in the electron rest frame, 1'(e) = F (6—) O(e—¢) <« e Lorentz invariant
€




From the Doppler formula e=¢"y(1+ Bu’) , the incident intensity is
€

1'<e>=( ] FS(ye(+Bu)—¢)
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Emission coefficient in the rest frame:

Let N = density of a electron beam

L4 / / 1 4 / / 4
j&N=No,—[I'¢".u)du
4r

’ /F —_ / .

_ N'o T2€1 0 if % yfl <1 or equivalently 0 <¢
2¢,"YB YPe, y(+p)

=0, otherwise.

Emission coefficient in the observer’s frame:

Recall that

J Lorentz invariant
€ = 617/(1 - ﬁ:ul)
d’x’
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e )= }j'(e{)

1
NGgQFo, ; € <e’< €
=y 2618 y(1+B) y(d-p)

0, otherwise.

( No ¢ F, i € <e < €
={ 267787 YA+BA-Bu) Ty A-B)d-Bu)

0, otherwise.

. . . . . . 1 e+l .
For an isotropic distribution of electrons j(e)= 5 J' NCHTEIT

The integrand is nonzero only for a certain interval of K;:

0 <e < 0 >l{1—6—01 }s Sl{l—e—ol— }
Ty T B (U Th R s R ] R

Since —1<u, <1, the nonzero interval becomes:

1<y S%{l—i—o(l—ﬁ)}, for

1-p & o
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1 e 1+p

€
—|1-20+ <u <1, for 1<1<
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The result 1s:

) 5 [ l l
1—
+pa-a-p). “Lcbg [
€, 1+8 ¢ e
(e) =2zt 1+ -
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~ NorF,
2 W
Note that " 03
0.5
(1) For small B the curves are symmetrical . 1 1 o7
about the initial photon energy. 0 : 2 3 4
(2) As B increases, the portion of the curve for -
becomes more and more dominant.
J, J(e)de =No . the conservation of number of photons upon scattering

:Ow Jj(e)g —¢€,)de, = No, %7/2 B’¢,F, :the average increase in photon energy per scattering
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For extreme relativistic case (S =1,y > 1)

j(e)= YO0k {(l B-a ﬂ—ﬁ)}, 1<aHh

4eyy B & 1-p
_No, K, 1+ _il—ﬁ
4e,y> B’ 6 1+
1+
NGF2 g | Note: 1< < P \1<€1<4y —->0<x<1
460}/ € 4y° & 1-P S0
o, F 20 1, 0sxs!
€ —(1—x), <x<
@)= =TI f () where x=A—, f =1 3
46y e 0, otherwise
When the exact angular dependence T T T T T T T T

in the differential cross section is included,

f(x)=2xInx+x+1-2x>, 0<x<1
fix)




e Power law distribution of relativistic electrons:

N(y)=Cy™" : electron distribution
47l (e)
C

n =

€

: photon number density

Total scattered power per volume per energy is

dE
dVdtde,

=4me j(€)

_ 3O; jde( ) j dy(Cy?)f(x)

_ p=2 _~(p-D)2 (p-12, [ 7. .(p-1)r2
=30,cC2" "¢ J.d €€ n, J.x dxx f(x)
1

Suppose that ¥, > ¥, and that n, peaks at some value ¢ .

Then x =¢/(4y’e)—0 and the second integral is independent of ;.

X, =€, /(4”}/226) —> oo

The spectral index 1s to be 1dentical to the case of synchrotron emission.

dE —(p-1)/2

o< €

dVdtde,
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[Repeated Scattering: The Compton y Parameter]

e We restrict our considerations to situations in which the Thomson limit applies: e < mc’

e Compton y parameter, to determine whether a photon will significantly change its energy in
traversing the medium:

(average fractional )

energy change per

~<
If

[mean number of j
X

scatterings

 scattering )

When y > |, the total photon energy and spectrum will be significantly altered; whereas for y <1,
the total energy 1s not much changed.

* Average fractional energy change per scattering (for a thermal distribution of electrons)

Consider first the nonrelativistic limit.

’

/ 4 6
€, ze[l— 2(1—(:08@)} ) —=—1——=——— . angle average
mc

In the lab frame to lowest order, this must be of the form

A€ € okT
— =T 2
€ mc mc




To calculate o, image that the photons and electrons are in complete equilibrium but interact only
through scattering.

Assume that the photon density 1s sufficiently small that stimulated processes can be neglected.
Then, we obtain the Wien’s law for the photon distribution:

€
n =Keexp| ——

We have the averages X
(€)= |en, de/_[n6 de = 3kT

<62> = :eznE de/J‘n6 de = 12(I<T)2

For this case, no net energy can be transferred from photons to electrons, so

2
Ae=02—<6 2>+ak€<e>=£];(a—4)kT — a=4
mc mc mc

Thus for nonrelativisitic electrons in thermal equilibrium, the energy transfer per scattering is

[(AG)NR = (4T —e)J
mc

Note that if electrons have high enough temperature relative to incident photons, the photons gain
energy. This 1s the inverse Compton scattering.

If e€>4kT ,on the other hand, energy is transferred from photons to electrons.
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In the ultrarelativistic limit (y > 1), 1gnoring the energy transfer in the electron rest frame,

P _(413)0,cy*BU,,

compt

dE, |dt o,cU,

:%yzﬁz — (Ae)Rz%)/ze

For a thermal distribution of ultrarelativistic electrons,
2 2 2
a () w) (Hj
<}/ > (mc*)? (mc2 (Ak ‘ mc’

Mean number of scatterings,

Recall that, for a pure scattering medium,

mean number of
( j ~ MaX(Tes, Tjs) where Te, ~ PK R

K. = Or _ 0.40 cm”® g~' for ionized hydrogen

es m
p

scatterings

R = size of the finite medium

Compton y parameter:

AKT kT Y
[ Yag = -~ Max(7,,, Tezs) Vg = 166( 2) Max(7,, Tfs )J
mc

mc
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[Repeated Scattering: Spectra and Power]

* A power-law spectrum may be a natural consequence of a power-law distribution of electrons.

 We will show that a power-law photon distribution can also be produced from repeated scattering
off a nonpower-law electron distribution.

Let A = the mean amplification of photon energy per scattering

=4
€

4, , kT Y o
~ §<y > =16 for thermal electron distribution

2
mc

mean photon energy = ¢
intensity = I(e,) at ¢,
After k scattering, the photon energy will be ¢ ~€A”.

For a optically thin scattering medium (7., <1), the probability of a photon undergoing k scattering
before escaping the mediumis p,(7,,)~7. .

The emergent intensity at energy ¢, is given by

In7/InA
I(Ek) - I(El- )Tfs - I(Ei )T;rsl(Ek/Ei)/lnA _ I(Gi)(e—k]
€.

1

—In7_
InA

s (e )~ 1 (el.)(e—") where o = > power-law shape
€.

4
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e Total Compton power in the output spectrum 1s given by
P < Jl(ek)dek = I(el.)el. Ux_“ dx}

The factor in square brackets is approximately the factor by which the initial power (g )e 1s
amplified in energy.

Clearly, this amplification will be important if o <« 1. Therefore, energy amplification of a soft
photon input spectrum 1s important when

—Int

=<1 - In(r, A)=21 > y=Ar,_ >1

es v

InA
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[Synchrotron self-Compton (SSC) emission]

e The modification of the photon spectrum by Compton scattering is called Comptonization.

» Relativistic electrons in the presence of a magnetic field will surely emit synchrotron radiation at

some level. The photons will undergo inverse compton scattering by the very same electrons that
emitted them in the first place. Such scattering must take place before the synchrotron photon
leaves the source region. This is the synchrotron self-Compton (SSC) process.

Crab nebula

10 15 20 25
-7 T T T T T T T T T T T T T T T T T

log10(\/’[“\,/erg/(cm2 S))

log,o(E/eV)
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Active Galactic Nuclei

A Unified Model for AGN

R\adio Loud
QSO

~
- = BLRG
e/
~ -

Radio Quiet
QSO
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e Blazars: If the observer view 1s more or less normal to the accretion disk, the action close to the
core becomes visible. The observer considered to lie within the jet beam. Such objects are known
as blazars or as BL Lacertae objects.

e Blazars have SEDs that are typically two peaked. The peak at lower frequency is attributed to

synchrotron radiation and the one at higher frequency to IC scattering.

The lower-energy case (LBL blazar) extends from the radio to the gamma-ray bands but is quiet
in the TeV band. The higher-energy case (HBL blazar) reaches TeV energies but 1s quiet in the

radio range.

LBL: Low-frequency peaked BL Lacs
HBL: High-frequency peaked BL Lacs
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