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Overview

Radiative processes
• link astrophysical systems with astronomical observables
• cover many areas of physics and astrophysics (electrodynamics, 

quantum mechanics, statistical mechanics, relativity...)

Textbooks
• Radiative Processes in Astrophysics (George Rybicki & Alan 

Lightman)
• The Physics of Interstellar and Intergalactic Medium (Bruce T. 

Draine)
• The Physics of Astrophysics, Volume 1 Radiation (Frank H. Shu)
• Physics and Chemistry of the Interstellar Medium (Sun Kwok)
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1. Fundamentals of Radiative Transfer
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Electromagnetic Radiation

Particle/wave duality

classically: electromagnetic waves
• speed of light: 
• wavelength and frequency:

quantum mechanically: photons
• quanta: massless, spin-1 particles (boson)
• Plank:
• Einstein: 

� = c/⌫

E2 = (m�c
2)2 + (pc)2

p = E/c

E = h⌫ = hc/� (h = 6.625⇥ 10�27 ergs)

c = 3⇥ 1010cm s�1
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Energy Flux

Definition
• Energy flux,   , is defined as the energy       passing through an 

element of area       in time interval 

•   depends on the orientation of elements of       and the frequency 
(or wavelength).

• Unit: 

2–7

In order to derive Poynting’s theorem, let’s look at the mechanical work done on a particle i by the electric and the magnetic fields. This work is given by

vi · Fi = qivi ·
(

E +
vi

c
× B

)

= qivi · E (2.34)

since vi ⊥ (vi × B).

Summing over all particles at a certain position then gives
P =

∑

i

δ(x − xi(t))qivi · E = j · E (2.35)

Because of Ampère’s law,

∇× B =
4π
c

j +
1
c

∂E

∂t
⇒ j =

c

4π
(∇× B) −

1
4π

∂E

∂t
(2.4)

we find

j · E =
c

4π

(

E · (∇× B) −
1
c
E ·

∂E

∂t

)

(2.36)

=
c

4π
E · (∇× B) −

1
8π

∂(E2)

∂t
(2.37)

Analogously to (a × b) · c = (b × c) · a one has
E · (∇× B) = ∇B · (B × E) = −∇B · (E × B) (2.38)

where ∇B operates only on B. Therefore

j · E = −
c

4π
∇B · (E × B) −

1
8π

∂E2

∂t
(2.39)

Note that
∇ · (E × B) = ∇B · (E × B) + ∇E · (E × B) (2.40)

Therefore, add (c/4π)∇E(E × B) to Eq. 2.39:

j · E = −
c

4π

(

∇B · (E × B) + ∇E(E × B) −∇E(E × B)
)

−
1
8π

∂E2

∂t
(2.41)

= −
c

4π
∇ · (E × B) +

c

4π
∇E(E × B) −

1
8π

∂E2

∂t
(2.42)

2–7

but ∇E(E × B) = (∇× E) · B (similar to Eq. 2.38)

= −
c

4π
∇ · (E × B) +

c

4π
(∇× E) · B −

1
8π

∂E2

∂t
(2.43)

Calculate ∇× E using Faraday’s law (Eq. 2.2), i.e.,

c

4π
(∇× E) · B = −

1
4π

∂B

∂t
· B = −

1
8π

∂

∂t
(B · B) = −

1
8π

∂B2

∂t
(2.44)

such that we finally obtain Poynting’s theorem

−j · E =
c

4π
∇ · (E × B) +

∂

∂t

(

E2

8π
+

B2

8π

)

(2.32)
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Radiation Quantities 1

Flux Density, I

dA
We now relate the electrodynamic
quantities such as E, B, or S to
measurables. Before we can do this,
need to introduce some definitions.

Definition. Energy flux, F , is defined
as the energy dE passing through
area dA in time interval dt:

dE = F dA dt (2.45)

Units of F are erg cm−2 s−1.
F depends on the orientation of dA, and can also depend on the frequency.
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Radiation Quantities 2

Flux Density, II

Flux from an isotropic radiation source, i.e., a source emitting equal amounts of
energy in all directions.
Spherically symmetric stars are isotropic radiation sources, other astronomical objects such as, e.g., Active
Galactic Nuclei, are not.

r 1

r2

Because of energy conservation, flux
through two shells around source is
identical:

4πr21 F (r1) = 4πr22F (r2) (2.46)

and therefore we obtain the inverse
square law,

F (r) =
const.

r2
(2.47)

F dE
dA dt

F dA

erg cm�2 s�1

dE = FdAdt
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Inverse Square Law

Flux from an isotropic radiation source, i.e., a source 
emitting equal amounts of energy in all directions.

• Because of energy conservation, flux through two shells around 
the source must be the same.

• Therefore, we obtain the inverse square law.

2–7

In order to derive Poynting’s theorem, let’s look at the mechanical work done on a particle i by the electric and the magnetic fields. This work is given by

vi · Fi = qivi ·
(

E +
vi

c
× B

)

= qivi · E (2.34)

since vi ⊥ (vi × B).

Summing over all particles at a certain position then gives
P =

∑

i

δ(x − xi(t))qivi · E = j · E (2.35)

Because of Ampère’s law,

∇× B =
4π
c

j +
1
c

∂E

∂t
⇒ j =

c

4π
(∇× B) −

1
4π

∂E

∂t
(2.4)

we find

j · E =
c

4π

(

E · (∇× B) −
1
c
E ·

∂E

∂t

)

(2.36)

=
c

4π
E · (∇× B) −

1
8π

∂(E2)

∂t
(2.37)

Analogously to (a × b) · c = (b × c) · a one has
E · (∇× B) = ∇B · (B × E) = −∇B · (E × B) (2.38)

where ∇B operates only on B. Therefore

j · E = −
c

4π
∇B · (E × B) −

1
8π

∂E2

∂t
(2.39)

Note that
∇ · (E × B) = ∇B · (E × B) + ∇E · (E × B) (2.40)

Therefore, add (c/4π)∇E(E × B) to Eq. 2.39:

j · E = −
c

4π

(

∇B · (E × B) + ∇E(E × B) −∇E(E × B)
)

−
1
8π

∂E2

∂t
(2.41)

= −
c

4π
∇ · (E × B) +

c

4π
∇E(E × B) −

1
8π

∂E2

∂t
(2.42)
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but ∇E(E × B) = (∇× E) · B (similar to Eq. 2.38)

= −
c

4π
∇ · (E × B) +

c

4π
(∇× E) · B −

1
8π

∂E2

∂t
(2.43)

Calculate ∇× E using Faraday’s law (Eq. 2.2), i.e.,

c

4π
(∇× E) · B = −

1
4π

∂B

∂t
· B = −

1
8π

∂

∂t
(B · B) = −

1
8π

∂B2

∂t
(2.44)

such that we finally obtain Poynting’s theorem

−j · E =
c

4π
∇ · (E × B) +

∂

∂t

(

E2

8π
+

B2

8π

)

(2.32)
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Radiation Quantities 1

Flux Density, I

dA
We now relate the electrodynamic
quantities such as E, B, or S to
measurables. Before we can do this,
need to introduce some definitions.

Definition. Energy flux, F , is defined
as the energy dE passing through
area dA in time interval dt:

dE = F dA dt (2.45)

Units of F are erg cm−2 s−1.
F depends on the orientation of dA, and can also depend on the frequency.
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Radiation Quantities 2

Flux Density, II

Flux from an isotropic radiation source, i.e., a source emitting equal amounts of
energy in all directions.
Spherically symmetric stars are isotropic radiation sources, other astronomical objects such as, e.g., Active
Galactic Nuclei, are not.

r 1

r2

Because of energy conservation, flux
through two shells around source is
identical:

4πr21 F (r1) = 4πr22F (r2) (2.46)

and therefore we obtain the inverse
square law,

F (r) =
const.

r2
(2.47)

4⇡r21F (r1) = 4⇡r22F (r2)

F =

const.

r2
6



(Specific) Intensity or (Surface) Brightness

Flux = a measure of the energy carried by all rays passing 
through a given area
Intensity =  the energy carried along by individual rays.
• Let        be the amount of radiant energy which crosses in time  

the area       with unit normal    in a direction within solid angle 
centered about    with photon frequency     between           .

• The monochromatic specific intensity     is then defined by the 
equation.

• area normal to    :
• Unit: 

dA
dtdE⌫

n
k

d⌦
⌫ ⌫ + d⌫

I⌫
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Radiation Quantities 3

Specific Intensity, I

Better description of radiation: energy carried along individual ray.

dΩ

n

Problem: Rays are infinitely thin =⇒
No energy carried by them. . .
=⇒Look at energy passing through

area dA (with normal n) in all
rays going into spatial direction
dΩ.

The specific intensity, Iν, in the band
ν, . . . , ν + dν is defined via

dE = Iν dA dt dΩ dν (2.48)

Iν is measured in units of erg s−1 cm−2 sr−1Hz−1 and depends on location,
direction, and frequency.
In an isotropic radiation field, Iν = const. for all directions.
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Radiation Quantities 4

Specific Intensity, II

Using the definition of I , we can calculate the net flux in a direction n.
n

dΩ

θ

Contribution to flux in direction n from
flux into direction dΩ:

dFν = Iν cos θ dΩ (2.49)
Integrate over all angles to obtain the total flux:

Fν =

∫

4π sr
Iν cos θ dΩ =

∫ π

θ=0

∫ 2π

0
Iν(θ, φ) cos θ sin θ dθ dφ (2.50)

2–11

θ

Especially in the theory of stellar atmospheres, where often deals with the radiative transport
through a slab of material and can assume cylindrical symmetry, one writes

µ = cos θ (2.51)

where θ is the angle between the z-direction (“up”-“down” direction) and the direction of the
light ray. Then

dµ

dθ
= − sin θ (2.52)

and

Fν =

∫

−1

µ=+1

∫ 2π

φ=0
Iν(µ, θ)(−µ) sin θ

dµ

sin θ
dφ (2.53)

=

∫ +1

µ=−1

∫ 2π

φ=0
Iµ(µ, θ)µ dµ dφ (2.54)

taking into account the cylindrical symmetry,

= 2π
∫ +1

−1
Iν(µ)µ dµ (2.55)
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Radiation Quantities 5

Specific Intensity, III

The specific intensity is constant along the line of sight.

Proof: Consider the following figure:

R

dAdA1 2

Energy carried through area dA1 and
dA2 is given by

dE1 = I1 dA1 dt dΩ1 dν (2.56)
dE2 = I2 dA2 dt dΩ2 dν (2.57)

where dΩ1: solid angle subtended by
dA2 at dA1, and vice versa:

dΩ1 = dA2/R
2 (2.58)

dΩ2 = dA1/R
2 (2.59)

Energy conservation implies dE1 = dE2, i.e.,

I1 dA1 dt
dA2

R2 dν = I2 dA2 dt
dA1

R2 dν (2.60)

that is: I1 = I2 = const.. QED.

k

dA
x

erg s�1cm�2sr�1Hz�1

dAk = dA cos ✓k

dE⌫ = I⌫(k,x, t)dAkd⌦d⌫dt

= I⌫(k,x, t) cos ✓dAd⌦d⌫dt
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Net flux and Momentum flux

Net flux in the direction    is obtained by integrating the 
differential flux over all solid angle.

• The net flux is zero, if the radiation is isotropic.

Momentum flux
• The first cosine factor is due to the area normal to     and the 

second one is due to the projection of the differential flux vector to 
the normal vector    . 

n

F⌫ =

Z
dF⌫ =

Z
I⌫ cos ✓d⌦

p⌫(dynes cm
�2 Hz�1) =

1

c

Z
I⌫ cos

2 ✓d⌦

k

n

F⌫ =

Z 2⇡

0

Z ⇡

0
I⌫ cos ✓ sin ✓d✓d� = 2⇡I⌫

Z ⇡

0
cos ✓ sin ✓d✓

= ⇡I⌫
⇥
sin

2 ✓
⇤⇡
0
= 0
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Note

Moments of intensity
• intensity : scalar (amplitude of the differential flux)
• differential flux : vector
• momentum flux (radiation pressure) : tensor

Intensity can be defined as per wavelength interval.

Integrated intensity is defined as the intensity over all 
frequencies.

I =

Z 1

0
I⌫d⌫ =

Z 1

0
I�d�

I⌫ |d⌫| = I�|d�|
⌫I⌫ = �I�

 
����
d⌫

d�

���� =
c

�2
=

⌫

�
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Constancy of Specific Intensity in Free Space

Consider a bundle of rays and any two points along the rays. Construct 
areas        and          normal to the rays at these points.
Consider the energy carried by the rays passing through both areas. 
Because energy is conserved,

Here,         is the solid angle subtended by          at         and so forth.

radiative transfer equation in free space:

dA1 dA2

dE1 = I⌫1dA1dtd⌦1d⌫1 = dE2 = I⌫2dA2dtd⌦2d⌫2

d⌦1 dA2 dA1

d⌦1 = dA2/R
2

d⌦2 = dA1/R
2 ! I⌫1 = I⌫2

d⌫1 = d⌫2

dI⌫
ds

= 0

dA1 dA2

R
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Inverse Square Law for a Uniformly Bright Sphere

Let’s calculate the flux at    from a sphere of uniform brightness 

Therefore, there is no conflict between the constancy of intensity 
and the inverse square law.
Note
• The flux at a surface of uniform brightness      is              .
• For stellar atmosphere, the astrophysical flux is defined by        .
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Radiation Quantities 6

Specific Intensity, IV

I = const. along a ray does not contradict the inverse square law!

θR c

θ
P

r

Proof: Assume sphere of uniform brightness,
B, the flux measured at point P is the flux
from all visible points of sphere:

F =
∫

I cos θ dΩ (2.61)

= B ·
∫ π

0

∫ θc

0
sin θ cos θ dθ dφ (2.62)

where sin θc = R/r. Therefore

F = 2πB

∫ arcsin(R/r)

0
sin θ cos θ dθ (2.63)

but because
∫ α
0 sin x cos x dx = 1

2 sin2 α,

= 2πB ·
1
2

(

R

r

)2
= πB

(

R

r

)2
∝

1
r2

(2.64)

=⇒ inverse square law is consequence of decreasing solid angle of objects!

2–13

One consequence of Eq. 2.64 is that the flux on the surface of a source of uniform brightness is given by

F = πB (2.65)

Therefore, especially for stellar atmospheres, one sometimes defines the astrophysical flux,

F :=
F

π
(2.66)

such that for stars (which roughly have uniform surface brightness),
F = B (2.67)

Be aware of this source of possible confusion!
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Radiation Quantities 7

Energy Density and Mean Intensity

The last important radiation quantity (for the moment) is the energy density, uν.
For a certain direction, Ω, and volume element dV , uν is defined via

dE = uν(Ω) dV dΩ dν (2.68)

But for light, the volume element can be written as

dV = c dt · dA (2.69)

such that Eq. 2.68 becomes

dE = cuν(Ω) dΩ dt dν (2.70)

Compare this to the definition of the intensity:

dE = Iν dA dt dΩ dν (2.48)

Therefore,
uν(Ω) = Iν/c (2.71)
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Radiation Quantities 8

Energy Density and Mean Intensity

The total energy density at frequency ν is then

uν =

∫

4π sr
uν(Ω) dΩ =

1
c

∫

4π sr
Iν(Ω) dΩ =:

4π
c

Jν (2.72)

where the mean intensity is defined by

Jν =
1
4π

∫

4π sr
Iν(Ω) dΩ (2.73)

Note that for an isotropic radiation field, Iν(Ω) = Iν, Iν = Jν.

The total radiation density is obtained by integration:

u =

∫

uν dν =
4π
c

∫ ∞

0
Jν dν (2.74)

I = B
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(Specific) Energy Density

Consider a bundle of rays passing through a volume 
element       in a direction    .
Then, the energy density per unit solid angle is defined by

Since radiation travels at velocity c, 

the definition of the intensity

Therefore, 

Energy Density

consider a bundle of rays passing through

a small volume dV

energy density uν(Ω) for bundle

defined by dE = uν(Ω) dΩ dV

but dV = dAdh, and flux thru height dh

in time dt = dh/c, so

dV = c dA dt

dΩ

dA
dh = c dt

volume
dV = c dA dt

thus we have

dE = c uν(Ω) dA dt dΩ (6)

but by definition dE = Iν dA dt dΩ, so

uν(Ω) =
Iν
c

(7)

5
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Energy Density and Mean Intensity

Integrating over all solid angle, we obtain

Mean intensity is defined by

Then, the energy density is

Total energy density is obtained by integrating over all 
frequencies.
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Radiation Pressure

Consider a reflecting enclosure containing an isotropic 
radiation field.
Each photon transfers twice its normal component of 
momentum on reflection. Thus, we have

The angular integration yields

14



Radiative Transfer Equation

As a ray passes through matter, energy may be added, 
subtracted, or scattered from it by emission, absorption, or 
scattering.

The intensity will not in general remain constant.

We need to derive the radiative transfer equation.

15



Emission coefficient and Emissivity

• (monochromatic) spontaneous emission coefficient     = the 
energy emitted per unit time per unit solid angle and per unit 
volume

• (angle integrated) emissivity     = the energy emitted 
spontaneously per unit frequency per unit time per unit mass. For 
isotropic emission,

• Then, we obtain

• In going a distance    , a beam of cross section       travels through 
a volume                  . Thus the intensity added to the beam is by 
spontaneous emission is:

16



Absorption Coefficient

Consider the medium with particle number density              , 
each having effective absorbing area (cross section)
• number of absorbers = 
• total absorbing area =
energy taken out of beam

Absorption coefficient                is defined by

where                is the mass density and                    is called 
the mass absorption coefficient or the opacity coefficient.

17



The Radiative Transfer Equation

Without scattering term,

Including scattering term, we obtain an integrodifferential equation.

• scattering coefficient
• scattering phase function

• for isotropic scattering

Stimulated emission:
• We consider “absorption” to include both “true absorption” and 

stimulated emission, because both are proportional to the 
intensity of the incoming beam (unlike spontaneous emission).

Z
�⌫(⌦,⌦0)d⌦ = 1

18



Emission Only & Absorption Only

For pure emission,

• The brightness increase is equal to the emission coefficient 
integrated along the line of sight.

For pure absorption,

• The brightness decreases along the ray by the exponential of the 
absorption coefficient integrated along the line of sight.
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Optical Depth & Source Function

Optical depth:

• Then, for pure absorption, 
• A medium is said to be optically thick if
• A medium is said to be optically thin if

Source function:

• The radiative transfer equation can now be written

20



Mean Free Path

• From the exponential absorption law, the probability of a photon 
absorbed between optical depths      and              :

• The mean optical depth traveled is thus equal to unity:

• The mean free path is defined as the average distance a photon 
can travel through an absorbing material without being absorbed. 
In a homogeneous medium, the mean free path is determined by

• A local mean path at a point in an inhomogeneous material can 
be also defined.

|dI⌫ | =
����
dI⌫
d⌧⌫

���� d⌧⌫ & |dI⌫ | / P (⌧⌫)d⌧⌫ ! P (⌧⌫) = e�⌧⌫
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Formal Solution

The solution is easily interpreted as the sum of two terms:
• the initial intensity diminished by absorption
• the integrated source diminished by absorption.
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Relaxation

For a constant source function, the solution becomes

“Relaxation”
•  

• The source function  is the quantity that the specific intensity tries 
to approach, and does approach if given sufficient optical depth.

I⌫ > S⌫ ! dI⌫
d⌧⌫

< 0, then I⌫ tends to decrease along the ray

I⌫ < S⌫ ! dI⌫
d⌧⌫

> 0, then I⌫ tends to increase along the ray
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Radiation Force

• radiation flux vector in direction     :

• the vector momentum per unit area per unit time per unit path 
length absorbed by the medium is

• The is the force per unit volume imparted onto the medium by the 
radiation field. The force per unit mass of material is given by

• Home work: derive the Eddington luminosity (problem 1.4)
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Thermal equilibrium
• Equilibrium means a state of balance.
• Thermal equilibrium refers to steady states of temperature, which may 

be spatial or temporal.
• In a state of (complete) thermodynamic equilibrium, no net flows of 

matter or of energy, no phase changes, and no unbalanced potentials 
(or driving forces), within the system.

• When the material is in thermodynamic equilibrium, and only the 
radiation field is allowed to depart from its TE, we refer to the state of 
the system as being in local thermodynamic equilibrium (LTE).

• A blackbody is an idealized physical body that absorbs all incident 
radiation regardless of frequency or angle of incidence (i.e., perfect 
absorber).

• A blackbody in thermal equilibrium emits the blackbody radiation, which 
is itself in thermal equilibrium.

• Thermal radiation is radiation emitted by “matter” in thermal equilibrium.

25



Universal function

• In equilibrium, radiation field in box doesn’t change.

• Now, consider another enclosure (box 2), also at the same 
temperature, but made of different material or shape. If their 
escaping intensities are different, energy will flow spontaneously 
between the two boxes. This violets the second law of 
thermodynamics. Therefore, the escaping intensity should be a 
universal function of T and should be isotropic. The universal 
function is called the Planck function          .

Radiation and Thermodynamics

consider an enclosure (“box 1”)

in thermodynamic equilibrium at temperature T

the matter in box 1

• is in random thermal motion

• will absorb and emit radiation

details of which depends on

the details of box material and geometry

• but equilibrium

→ radiation field in box doesn’t change

Iν,1T

box 1

open little hole: escaping radiation has intensity Iν,14

now add another enclosure (“box 2”), also at temperature T
but made of different material

IνIν

filter

T T

box 1 box 2

,2 ,1

separate boxes by filter passing only frequency ν
radiation from each box incident on screen
Q: imagine Iν,1 > Iν,2; what happens?
Q: lesson?
Q: how would Iν,1 change if we increased the box volume

but kept it at T?
5
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Kirchhoff’s Law

• Consider an element of some thermally emitting material at 
temperature   .

• Put this into a blackbody enclosure at the same temperature.
• Let the source function of the material be     .

• But, the presence of the material cannot alter the radiation, since 
the new configuration is also a blackbody enclosure at    .

• Kirchhoff’s Law: in LTE, the ratio of the emission coefficient to the 
absorption coefficient is a function of temperature and frequency 
only.

ThermaiRIIciihtion 17 

Fipm 1.9 Thermal emitter plnced in the opening of a blackbody enchum. 

Relation (1.37), called Kirchhoff s law, is an expression between 4. and j,, 
and the temperature of the matter T. The transfer equation for thermal 
radiation is, then, [cf. Eq. (1.23)], 

dI” - = - gr, + cu,B,( T ) ,  
ds 

or 

-= -  dru I,  + B,( T ) .  
d., 

(1.38) 

Since S, = B,, throughout a blackbody enclosure, we have that I,, = B,, 
throughout. Blackbody radiation is homogeneous and isotropic, so that 
p = j u .  

At this point it is well to draw the distinction between blackbody 
radiation, where I ,  = B,, and thermal radiation, where S,, = B,. Thermal 
radiation becomes blackbody radiation only for optically thick media. 

I 

Thermodynamics of Blackbody Radiation 

Blackbody radiation, ltke any system in the thermodynamic equilibrium, 
can be treated by thermodynamic methods. Let us make a blackbody 
enclosure with a piston, so that work may be done on or extracted from 
the radiation (Fig. 1.10). Now by the first law of thermodynamics, we have 

dQ= dU+pdV,  (1.39) 

where Q is heat and U is total energy. By the second law of thermody- 
namics, 

j⌫ = ↵⌫B⌫(T ) ! Kirchho↵

0
s Law

Note : j⌫ = B⌫(T ) if ↵⌫ = 1 (perfect absorber, i.e., blackbody)
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Implications of Kirchhoff’s Law

• A good absorber is a good emitter, and a poor absorber is a poor 
emitter. A good reflector must be a poor absorber, and thus a poor 
emitter.

• It is not possible to thermally radiate more energy than a 
blackbody, at equilibrium.

• The radiative transfer equation in LTE:

• Note:
blackbody radiation means
thermal radiation means
Thermal radiation becomes blackbody radiation only for optically thick media.
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Thermodynamics

• First Law of Thermodynamics: heat is energy in transit.

where Q is heat and U is total energy.

• Second Law of Thermodynamics: heat is entropy.

where S is entropy.

See “Fundamentals of Statistical and Thermal Physics” (Federick Reif)
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Thermodynamics of Blackbody Radiation
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• Stefan-Boltzmann law:

• total energy density:

• the integrated Planck function

• emergent flux (another form of the Stefan-Boltzmann law)

31



Entropy of Blackbody Radiation

•  Entropy:

• Entropy density:

• The law of adiabatic expansion for blackbody radiation:

Thus, we have the adiabatic index for blackbody radiation:
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The Planck Spectrum

Density of photon state:
• Consider a photon propagating in direction    inside a box with 

dimensions                   in x, y, z directions.
• wave vector: 
• If each dimension of the box is much longer than a wavelength, 

the photon can be represented by standing wave in the box.
• number of nodes in each direction:
• number of node changes in a wave number interval (if             ): 

• number of stats in 3D wave vector element                               :

two independent polarizations
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• the density of states (number of states per solid angle per volume 
per frequency):

Average energy of each state:
• Each state may contain    photons of energy     . The energy of the 

state is                 .
• The probability of a state of energy      is proportional to          , 

where                      and       is the Boltzmann’s constant.
• Therefore, the average energy is:
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Average number of photons (occupation number):

Energy density:

Planck Law:
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Stefan-Boltzmann constant & Riemann zeta function

36



Rayleigh-Jeans Law & Wien Law

Rayleigh-Jeans Law

• Originally derived by assuming the classical equipartition energy 

• ultraviolet catastrophe: if the equation is applied to all frequencies, 
the total amount of energy would diverge.

Wien Law
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Monotonicity with Temperature

3–9

To get all possible photons we need to count the number of al distinguishable photons at the same frequency, i.e., photons with different spin or with a different number of
nodes (=different n).

Spin is the easy one: there are only 2 polarization states.

To calculate the number of nodes, look the number in the x-, y-, or z-direction. In either direction

nx =
Lx

λ
=

kxLx

2π
⇐⇒ dnx =

Lx

λ
=

Lx dkx

2π
(3.41)

For n # 1, we can go to a “continuum of states”. Eq. 3.41 then implies

dN = dnx dny dnz =
LxLyLz d3k

(2π)3 =
V d3k

(2π)3 (3.42)

Therefore, the total number of states per unit volume and per wave number is

nk

d3k
= 2 ·

dN

V

1
d3k

=
2

(2π)3 (3.43)

where the factor 2 is due to spin.

Because of Eq. (3.40),

d3k = k2 dk dΩ =
(2π)3

c3 ν2 dν dΩ (3.44)

such that the density of states, i.e., the number of states per solid angle, volume, and frequency is given by

ρs =
nν

dν dΩ
=

2
(2π)3 ·

(2π)3

c3 ν2 =
2ν2

c3 (3.45)

Third step: Black Body Spectrum

To summarize, we had

• the mean energy of the state:

〈E〉 =
hν

ehν/kT − 1
(3.39)

3–9

• the state density:

ρs =
2ν2

c3 (3.45)

The total energy density is then

uν(Ω) = 〈E〉 · ρs =
2hν3

c3
1

exp(hν/kT ) − 1
(3.46)

(energy per volume per frequency per solid angle)

Because of Eq. (2.71) (uν = Iν/c), the intensity is given by

Iν =
2hν3

c2
1

exp(hν/kT ) − 1
=: Bν (3.18)

This is the spectrum of a black body.
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Blackbody Radiation: Properties 1

Spectrum, I

Max Planck (1858–1947)

In wavelength space, the spectrum of a
black body is blackbody radiation:

dE

dA dt dΩ dλ
=

Bλ =
2hc2/λ5

exp(hc/λkT ) − 1
(3.47)

Bλ: Energy emitted per second and wavelength interval

• h = 6.63 × 10−27 erg s: Planck’s constant
• k = 1.38 × 10−16 erg K−1: Boltzmann constant

105 1010 1015 1020
Frequency ν [Hz]

10-20

10-15

10-10

10-5

100

105

1010

I ν(
T)

 [e
rg

 s-1
 cm

-2
 H

z-1
 sr

-1
]

3K

102 K

103 K

104 K

105 K

106 K

107 K

108 K

109 K

Rayleigh-Jeans Law

Wein Law

Monotonicity:
Of two blackbody curves, the one 
with higher temperature lies entirely 
above the other.
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Wien Displacement Law

Frequency at which the peak occurs:

Wavelength at which the peak occurs:

Be aware
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Characteristic Temperatures

Brightness Temperature:

• The definition is used especially in radio astronomy, where the RJ 
law is usually applicable. In the RJ limit,

• radiative transfer equation in the RJ limit:

• In the Wien region, the concept is not so useful.
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Characteristic Temperatures

Color Temperature:
• By fitting the spectrum to a blackbody curve without regarding to 

vertical scale (absolute intensity scale), a color temperature      is 
obtained.

• The color temperature correctly gives the temperature of a 
blackbody source of unknown absolute scale.

Effective Temperature:
• The effective temperature of a source is obtained by equating the 

actual flux     to the flux of a blackbody at temperature       .
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Blackbody Radiation: Properties 7

Stefan-Boltzmann law

Ludwig Boltzmann
(1844–1906)

Jožef Stefan
(1835–1893)

As shown on worksheet 2, the total
energy density of black body
radiation is given by the
Stefan-Boltzmann law

uBB(T ) =
∫ ∞

0

4π

c
Bν dν

=
8π5

15

(

kT

hc

)3
kT

=: aT 4

=
(

T

3400 K

)4
erg cm−3

(3.57)

where the radiation density constant,

a :=
8π5k4

15c3h3 = 7.566 × 10−15 erg cm−3 K−4 (3.58)

Note: units of uBB(T ) are erg cm−3.
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Blackbody Radiation: Properties 8

Stefan-Boltzmann law

φ

Often we are interested in the radiation diffusing out of a
medium in thermal equilibrium, such as the flux of
radiation at the surface of a star.

F =
∫ 2π

0

∫ π/2

0

∫ ∞

0
Bν dν dφ dθ (3.59)

=
∫ 2π

0

∫ π/2

0

cuBB

4π
cos φ sin φ dφ dθ (3.60)

=
cuBB

2

∫ π/2

0

1
2

cos(2φ) dφ =
cuBB

4
(3.61)

where cos φ is the projection factor between the direction of Bν and the area (Lambert’s law).
The total flux emitted by the surface is therefore given by

F =
dE

dt dA
=

c

4
uBB =

ac

4
T 4 =: σSBT

4 (3.62)

with the Stefan-Boltzmann constant

σSB :=
2π5k4

15c2h3 = 5.671 × 10−5 erg cm−2 K−4 s (3.63)
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Applications 1

Effective Temperature

5000 10000 15000
Wavelength [A]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

I λ/
I 55

56
G0 V

Teff (λ>1000A)=6485K
Teff (λ>5000A)=6094K

The effective temperature, Teff, of
an object with spectral shape Iν is
the temperature for which

F =
∫

Iν cos θ dν dΩ

= σT 4
eff

(3.64)

Sometimes, Iν is only known over a
certain wavelength range, and
depending on the spectrum the
measured Teff will depend on this
range (see figure).

G0 V spectrum after Pickles (1998),
PASP 110, 863

I

E
F

C
O

DRI

L

A I

N

R

D
N

X
A

E
A

ESI
I

C

M

L
M
V
A

AI

A
D

R

E

L
G

E

3–19

Applications 2

Planetary Surface Temperatures
The temperature of an irradiated body is given from energy equilibrium:

L$

4πa2πr2 = σSBT
44πr2 (3.65)

where a: distance to Sun, r: planetary radius.
Therefore

T =
(

L$

16πσSBr2

)1/4
=

281 K
(a/1 AU)1/2 (3.66)

Last step used L$ = 4 × 1033 erg s−1 and 1 AU = 1.496 × 1013 cm.
If the planet reflects part of the radiation and if the IR emissivity is only roughly a BB, then
Eq. (3.65) is modified,

(1 − B)
L$

4πa2πr2 = εσSBT
44πr2 =⇒ T =

281 K
(a/1 AU)1/2

(1 − B

ε

)1/4
(3.67)

where B: Bond albedo, and ε: effective emissivity
For the Earth, B = 0.39, for Venus, B = 0.72. Thus, since TEarth ∼ 288 K, εEarth = 0.55 < 1
(greenhouse effect).
If the planet is not a fast rotator, replace 4πr2 by 2πr2.

G0V spectrum (Pickles 1998, PASP, 110, 863)
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