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Overview

Radiative processes
» link astrophysical systems with astronomical observables

» cover many areas of physics and astrophysics (electrodynamics,
guantum mechanics, statistical mechanics, relativity...)

Textbooks

- Radiative Processes in Astrophysics (George Rybicki & Alan
Lightman)

» The Physics of Interstellar and Intergalactic Medium (Bruce T.
Draine)

- The Physics of Astrophysics, Volume 1 Radiation (Frank H. Shu)

» Physics and Chemistry of the Interstellar Medium (Sun Kwok)




1. Fundamentals of Radiative Transfer




Electromagnetic Radiation

Particle/wave duality

classically: electromagnetic waves

. speed of light: ¢ =3 x 10%m s7*

- wavelength and frequency: \=c/v

guantum mechanically: photons
» quanta: massless, spin-1 particles (boson)

* Plank: E =hv =he/\ (h =6.625 x 10747 ergs)
- Einstein: 2 — (m702)2 4 (pC)Q
p=F/c




Energy Flux

Definition

» Energy flux, F, is defined as the energy ¢FE passing through an
element of area dA in time interval d¢

dEl = F'dAdt

- I'depends on the orientation of elements of dA and the frequency

(or wavelength).
. Unit; erg cm ™% s+ \ /k
dA
N\




Inverse Square Law

Flux from an isotropic radiation source, i.e., a source
emitting equal amounts of energy in all directions.

7 \3

» Because of energy conservation, flux through two shells around
the source must be the same.

ATreF(ry) = 4nrs F(ro)

- Therefore, we obtain the inverse square law.
o const.
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(Specific) Intensity or (Surface) Brightness

Flux = a measure of the energy carried by all rays passing
through a given area

Intensity = the energy carried along by individual rays.

» Let dE, be the amount of radiant energy which crosses in time (¢t
the area dA with unit normal n in a direction within solid angle d
centered aboutk with photon frequency v between v + dv.,

- The monochromatic specific intensity 1. is then defined by the
equation.

nA
k
dE, = I,(k, x,t)dAxdQdvdt /Z o
= I, (k,x,t)cos 0dAdddvdt
- area normal to k: dAx = dAcos6 Xy

« Unit: erg s lem2sr tHz ! dA




Net flux and Momentum flux

Net flux in the direction n is obtained by integrating the
differential flux over all solid angle.

FV:/dFV:/IVCOS@dQ

» The net flux is zero, if the radiation is isotropic.

27T s s
F, = / / I, cosOsinfdfdo = 271, / cos 0 sin 6d6
0 0 0
=rl, [sin2 9]3 =0

1

Momentum flux py(dynes cm™ Hz ') = p / I, cos® 6dS)

« The first cosine factor is due to the area normal to k and the
second one is due to the projection of the differential flux vector to
the normal vector n.




Note

Moments of intensity

* intensity : scalar (amplitude of the differential flux)
- differential flux : vector

- momentum flux (radiation pressure) : tensor

Intensity can be defined as per wavelength interval.

I,|dv| = I|d)| dv c v
VL/ — )\I)\ dA A2 A

AN

Integrated intensity is defined as the intensity over all

frequencies. o 0
1 :/ ]VdV :/ ])\d)\
0 0




Constancy of Specific Intensity in Free Space

Consider a bundle of rays and any two points along the rays. Construct
areas dA;and d A, normal to the rays at these points.

Consider the energy carried by the rays passing through both areas.
Because energy is conserved,

dEl — [V1 dAldtdﬂldyl — dEQ — I,/z dAthdQQdVQ
Here, df; is the solid angle subtended by dA, at dA; and so forth.

dQq = dAs/R? < R 7z
dQQ — dAl/R2 — L/l — IVQ
dVl — dVQ

dA;

radiative transfer equation in free space:

dl,
L Ag—y
ds
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Inverse Square Law for a Uniformly Bright Sphere

Let’s calculate the flux at P from a sphere of uniform brightness B

7y 0.
F:/ICOSHdQ:B/ dgb/ cos 0 sin 6d6
0 0

= 1B(1 — cos® 0,) = mBsin? 6, k =7

P
R R\~ / \6°
sinf, = — - F=7D (—)

(A T

Therefore, there is no conflict between the constancy of intensity
and the inverse square law.

Note

» The flux at a surface of uniform brightness B is F =nB.
» For stellar atmosphere, the astrophysical flux is defined by F/~ .
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(Specific) Energy Density

Consider a bundle of rays passing through a volume
element 4V in a direction Q.

Then, the energy density per unit solid angle is defined by

dE = u, (Q)dVdQdy
Since radiation travels at velocity ¢, dV = dA(cdt)

the definition of the intensity
dE = I,dAdtdQdv

Therefore,

u,/(Q) — L/(Q)/c volume —
dV = c dA dt

dh = c dt

dA
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Energy Density and Mean Intensity

Integrating over all solid angle, we obtain
Uy, = /uV(Q)dQ = %/L,dﬂ

Mean intensity is defined by

1
J, = — | I,dS)
4%/

Then, the energy density is

A
U, =

Jy

c
Total energy density is obtained by integrating over all

frequencies. A
u = /quV: — | J, dv

C
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Radiation Pressure

Consider a reflecting enclosure containing an isotropic
radiation field.

Each photon transfers twice its normal component of
momentum on reflection. Thus, we have

2

Dy, = —/IV cos? 0dS)

C
2 p

= —J, /C082 0ds? p >
C
4 ! P

— _WJI// :u2d:u
& 0
1

— gt Ap = 2p

The angular integration yields p = %u
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Radiative Transfer Equation

As a ray passes through matter, energy may be added,
subtracted, or scattered from it by emission, absorption, or
scattering.

The intensity will not in general remain constant.

We need to derive the radiative transfer equation.

15



Emission coefficient and Emissivity

(monochromatic) spontaneous emission coefficient . = the
energy emitted per unit time per unit solid angle and per unit

volume
dE = j,dVdQdtdy (j, : erg cm™3 571 st~ Hz 1)

(angle integrated) emissivity ¢, = the energy emitted
spontaneously per unit frequency per unit time per unit mass. For

Isotropic emission, dQ
dE = ¢,pdVdtdv-— (e, serg g™ s Ha ™)
70
Then, we obtain j, = % OT /jde — €,

In going a distance ds, a beam of cross section dA travels through
a volume dV = dAds. Thus the intensity added to the beam is by
spontaneous emission Is:

dl, = j,ds
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Absorption Coefficient

Consider the medium with particle number density n (cm™?),
each having effective absorbing area (cross section) o, (cm?)

 number of absorbers = ndAds
- total absorbing area = no,dAds

energy taken out of beam
—dI,dAdQdtdy = I,no,dAdsdQdtdy

—dl, = —no,l,ds = —«,1,ds
Absorption coefficient . (cm™") is defined by
a, = No,
— IOK’I/

where p (g cm™) is the mass density and #» (cm” g7') is called
the mass absorption coefficient or the opacity coefficient.
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The Radiative Transfer Equation

Without scattering term,
ar, . I
— Juv — Oply
ds J

Including scattering term, we obtain an integrodifferential equation.

Q-VI, = —a 1, + j, + a5 / b, (2, UV, ()dSY

» scattering coefficient «5® (cm™1)
- scattering phase function /(bV(Q,Q/)dQ _

- for isotropic scattering ¢, (Q, Q') = %
-

Stimulated emission:

» We consider “absorption” to include both “true absorption” and
stimulated emission, because both are proportional to the
intensity of the incoming beam (unlike spontaneous emission).
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Emission Only & Absorption Only

For pure emission, a, =0

Wy > L) =Liso) + [ Guls)ids
S S0

» The brightness increase is equal to the emission coefficient
integrated along the line of sight.

For pure absorption, Jj. =0
dI, g
= —a,l, — L,(s)=1,(sp)exp|— [ a,(s)ds
S S0

« The brightness decreases along the ray by the exponential of the
absorption coefficient integrated along the line of sight.
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Optical Depth & Source Function

Optical depth:
7,(8) = /S a,(s')ds" = /S n(s)o,ds = /S p(s" )k, ds’

» Then, for pure absorption, I,(s) =1,(sg)e” ™

+ A medium is said to be optically thick if 7. > 1

- A medium is said to be optically thinif 7. <1
Jv

Source function: s, = £
y

» The radiative transfer equation can now be written

dl,

= -1, + 5,
dr, *
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Mean Free Path

From the exponential absorption law, the probability of a photon
absorbed between optical depths 7 and 7. + d7:

dl,

dl,| =
‘ ‘ dt,

dr, & |dI,| < P(1,)dr, — P(r,)=¢e¢ ™

The mean optical depth traveled is thus equal to unity:
< Ty >= / T, P(1,)dr, = / e vdr, =1
0 0

The mean free path is defined as the average distance a photon
can travel through an absorbing material without being absorbed.
In a homogeneous medium, the mean free path is determined by

1 1
<7'1/>:()é,/ly:1 % ll/:_:
Oy no,

A local mean path at a point in an inhomogeneous material can
be also defined.
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Formal Solution

dl,

— Su — -[V
dt,
dl,
e dr, eI, =e'S,
d

(e™1,) =¢S5,

dr,

I(7) = I,(0)e~" + /O e~ (=S, (7 )dr!

The solution is easily interpreted as the sum of two terms:
- the initial intensity diminished by absorption

* the integrated source diminished by absorption.




Relaxation

For a constant source function, the solution becomes

I(r)=1,0e™+S5S,(1—e™)
=5,+e ™ (,(0)—-5,)

“Relaxation”
dl,
* I, >S5, — T < 0, then I, tends to decrease along the ray
Ty
dl, .
I, <S5, — T > (0, then I, tends to increase along the ray
Ty

» The source function is the gquantity that the specific intensity tries
to approach, and does approach if given sufficient optical depth.

As 7, > 00, I, =S,
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Radiation Force

« radiation flux vector in direction n:
F,A = /Iyndﬂ

 the vector momentum per unit area per unit time per unit path
length absorbed by the medium is

1
F = _/&VFVdV < nO',/dAdS&

C C

» The Is the force per unit volume imparted onto the medium by the
radiation field. The force per unit mass of material is given by

F 1
f:—:—//inydu
p cC

- Home work: derive the Eddington luminosity (problem 1.4)
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Thermal equilibrium

» Equilibrium means a state of balance.

- Thermal equilibrium refers to steady states of temperature, which may
be spatial or temporal.

 |n a state of (complete) thermodynamic equilibrium, no net flows of
matter or of energy, no phase changes, and no unbalanced potentials
(or driving forces), within the system.

* When the material is in thermodynamic equilibrium, and only the
radiation field is allowed to depart from its TE, we refer to the state of
the system as being in local thermodynamic equilibrium (LTE).

- A blackbody is an idealized physical body that absorbs all incident
radiation regardless of frequency or angle of incidence (i.e., perfect
absorber).

» A blackbody in thermal equilibrium emits the blackbody radiation, which
IS itself in thermal equilibrium.

- Thermal radiation is radiation emitted by “matter” in thermal equilibrium.

25



Universal function

* In equilibrium, radiation field in box doesn’t change.

filter

box 1 box 1 box 2

» Now, consider another enclosure (box 2), also at the same
temperature, but made of different material or shape. If their
escaping intensities are different, energy will flow spontaneously
between the two boxes. This violets the second law of
thermodynamics. Therefore, the escaping intensity should be a
universal function of T and should be isotropic. The universal
function is called the Planck function B, (7).
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Kirchhoff’s Law

Consider an element of some thermally emitting material at
temperature 1.

Put this into a blackbody enclosure at the same temperature.

Let the source function of the material be S, .

itsS,>B, — 1I,>DB, - %: > b

lfSV<B1/ _> [I/<BI/
. SV:BV

But, the presence of the material cannot alter the radiation, since
the new configuration is also a blackbody enclosure at 7.

Kirchhoff’s Law: in LTE, the ratio of the emission coefficient to the
absorption coefficient is a function of temperature and frequency

only.
y 7, = a,B,(T) — Kirchhoff’s Law

Note : j, = B,(T) if «a, =1 (perfect absorber, i.e., blackbody)
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Implications of Kirchhoff’s Law

A good absorber is a good emitter, and a poor absorber is a poor
emitter. A good reflector must be a poor absorber, and thus a poor
emitter.

It is not possible to thermally radiate more energy than a
blackbody, at equilibrium.

Jv < By(T)

The radiative transfer equation in LTE:

1
dr,

Note:
blackbody radiation means [, = B, (1)
thermal radiation means S, = B, (T

Thermal radiation becomes blackbody radiation only for optically thick media.
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Thermodynamics

 First Law of Thermodynamics: heat is energy in transit.

d@) = dU + pdV

where Q is heat and U is total energy.

» Second Law of Thermodynamics: heat is entropy.

_ e

dsS i

where S is entropy.

See “Fundamentals of Statistical and Thermal Physics” (Federick Reif)
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Thermodynamics of Blackbody Radiation

dU dV 1 1 u
V du U 1 u
— 4T + — —
Tde +14W“+3Tdv
V du 4 u
— T dT+ ==
Tde +37ﬂV
or T dT ov 3T
0% S 1 u 4u 4 du

7 9ToV  TT 372 ' 3TdT

du 4u du dT
S — = — or — =4—
dl’ T U T
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Stefan-Boltzmann law:

Stenfan — Boltzmann law : w(T) = aT* < logu = 4logT + loga

T 4
u(T) = (3400 K) erg cm™”

total enerqgy density:
5 ' = [ 31w = BT
C C

the integrated Planck function

B(T) = /B,,(T)du Sy ey

47 T

emergent flux (another form of the Stefan-Boltzmann law)

F:/Fde:T('/B,/dV:TFB(T)
= oT"
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Entropy of Blackbody Radiation

»  Entropy:

4 4
dS = %zmT?’dT + E"’TSdV — S = gaT3v

 Entropy density:

4
S:S/V:§T3

» The law of adiabatic expansion for blackbody radiation:

Tad X V_1/3

Dad X T;ld o VA3
Thus, we have the adiabatic index for blackbody radiation:

Y=3 < pV"7 = constant
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The Planck Spectrum

Density of photon state:

Consider a photon propagating in direction n inside a box with
dimensions L., L,,L. inX,Y, z directions.

9 9
wave vector: k= Tﬂn _
C

If each dimension of the box is much longer than a wavelength,
the photon can be represented by standing wave in the box.

number of nodes in each direction: n, = ky L, /2w

number of node changes in a wave number interval (if n; > 1):

LAk,

An,
2T

number of stats in 3D wave vector element Ak, Ak, Ak, = d°k :

L,L,L.d> 3
AN = AnzAn,An, = 2 yL=d"F — 2Vd i

\<2w>3 (2m)?
two independent polarizations

33



» the density of states (number of states per solid angle per volume
per frequency):

27)312dud)
Ph = Kdkde = 2T
C
IR ~ dN 27
P T Vdvdn T A

Average energy of each state:

- Each state may contain n photons of energy hv. The energy of the
state I1Is FE, = nhv.

- The probability of a state of energy E,, is proportional to e "%,
where 5 = (kgT)~! and kg is the Boltzmann’s constant.

- Therefore, the average energy is:

¥ E,e PEn 9, o  _BE
(E) = S o~ BE, :—%m(znzge )
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N2 e PEn = 320 (e B = (1 — oAy

(B - hye Phv B hv
- 1—e P exp(hv/kgT) — 1

Average number of photons (occupation number):

1
n, = (F) [hv = exp(hw ko) — 1 > Bose — Einstein statistics

Energy density: 2h”/
Uy, () = ps () = exp(hv/kgT) — 1

Planck Law:
2hv? /c?
exp(hv/kgT) — 1

2hc? /NP

B, =
exp(hc/AkgT) — 1

OI‘B)\:
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Stefan-Boltzmann constant & Riemann zeta function

n

Bose integral : In:/ dx * :/ d:vaznze_(iﬂ)x
0 L Jo i=0

et —

Z (i + 1)n+1 /OOO dyy”e™? (y = (i+1)z)

(i D0+ 1

o0 o0 Sd
/ B,(T)dv = (2h/c*)(kgT/h)* / il
0 o e'—1
ks T4 2k T 1t
= 1I'(4) =
c?h3 CATE) c?h3 906
_ 2mkg
~ 15c2h3
2 5l€5
Lo = 1;;2}133 = 5.67 x 107° erg cm ™ * deg™* s~
82k
a4 = TB 7.56 x 1071° erg cm o deg_4

~ 15¢3h3
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Rayleigh-deans Law & Wien Law

Rayleigh-Jeans Law

2 2
h < kpT (v < 2 x 10°°Ha(T/1K)) — I[F/(T) = =—kpT
C

- Originally derived by assuming the classical equipartition energy
(E) =2 x (1/2)kgT

» ultraviolet catastrophe: if the equation is applied to all frequencies,
the total amount of energy would diverge. / 2dy s oo

Wien Law

2hv° hv
14 _
hv > kgT — 1) (T) = 5 €XP ( kBT)
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Monotonicity with Temperature

I(T) [ergs” ecm®Hz ' sr]

10

—
Ol
(6)]
T T T

—
oI

107

10

10|

15|

-20

—
o
I

: Rayleigh-Jeans Law

10°K

ain Law

Monotonicity:

Of two blackbody curves, the one
with higher temperature lies entirely
above the other.

0B,(T)  2h*v*  exp(hv/kr)
OT  c2ksT? [exp(hv/kgT) — 1)°

> ()

10°

10

10

1019
Frequency v [Hz]
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Wien Displacement Law

Frequency at which the peak occurs:

B,
88—‘1/:%&}( =0 — x=3(1—-¢e"7%), where x = hvyax/kT
%

hmax = 2.82kpT or =% = 5.88 x 10'° Hz deg ™"

Wavelength at which the peak occurs:

0B

T A= Amax = 0 — y=>5(1—e"Y), where y = hc/(AmaxksT)

y=4.97 and Ap.xI = 0.290 cm deg

Be aware Vmax # ¢/ Amax
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Characteristic Temperatures

Brightness Temperature:

L/ — BI/ (Tb)

» The definition is used especially in radio astronomy, where the RJ
law Is usually applicable. In the RJ limit,

2

1y = I,
b QVZkB

» radiative transfer equation in the RJ limit:

dTy
dr,
Ty, =Tp(0)e” ™ +T(1 — e~ ™) if T is constant.

= —T, +T (T = the temperature of the material)

* |In the Wien region, the concept is not so useful.
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Characteristic Temperatures

Color Temperature:

- By fitting the spectrum to a blackbody curve without regarding to
vertical scale (absolute intensity scale), a color temperature T, is

obtained.

» The color temperature correctly gives the temperature of a
blackbody source of unknown absolute scale.

Effective Temperature:

» The effective temperature of a source is obtained by equating the
actual flux F' to the flux of a blackbody at temperature s .

F = /COSHIVdVdQ = ol
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1.2 M
I A GOV -
10 - M M -
L / v _
| h
- / 'N T., (\>5000A)=6094K
- / h\ _
0.8+ ,

10000 15000
Wavelength [A]

GOV spectrum (Pickles 1998, PASP, 110, 863)
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